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Statement of Task 
• The National Research Council has appointed an ad hoc committee 

to explore the implications of space-based additive 

manufacturing technologies for space operations and the 

manufacture of space hardware. In conducting the study and 

preparing its report the committee will: 

– Assess the current state of additive manufacturing 

– Characterize the future states envisioned  

– Discuss the feasibility of the concept of space-based additive 

manufacturing of space hardware (including, but not limited to, a fully 

functional small spacecraft)  

– Identify the science and technology gaps between current additive 

manufacturing capabilities and the capabilities required  

– Assess the implications that a space-based additive manufacturing 

capability would have on launch requirements  



Statement of Task (2) 
The committee may also consider the following: 
• The potential mission payloads and capabilities that could be expected 

from a space-based, additively manufactured spacecraft 

• The role in potential missions for a single spacecraft system manufactured 

in space by additive manufacturing or for multiple spacecraft systems, 

including disaggregated constellations and fractionated satellites 

• Concepts of operations for space-based manufacture of space 

hardware (including small spacecraft) using additive manufacturing 

• Whether it is possible to develop a high-level heuristic tool for first-order 

assessments of space-based, additively manufactured small 

spacecraft concepts in their integrated planning and process efforts. 

 
Focus on 20 to 40 years down the road 

 

Direction from sponsor summed up as: 

 

“If what you’re doing is not seen by some people as science fiction, it’s 

probably not transformative enough.” 

Sergey Brin, Google Co-Founder, Google Driverless Car Project 



Potential Applications/Impacts 
• Tools and spare parts on ISS 

• Repair on-orbit instead of launching 

new satellites 

• Reducing logistics footprint on human 

space missions (for instance, 

packaging materials) 

• Construction of large structures in 

space (antennas, support structures) 

• Construction of habitats on planetary 

surfaces 

• Manufacturing spacecraft parts (solar 

panels) or even entire spacecraft in 

space  

• IMPACT – Changes to the basic 

architecture of space 

Note: there are several companies (e.g., Lockheed 

Martin, Orbital Sciences) that are already working on 

additive manufacturing of entire spacecraft on the 

ground. 
 



Meeting 1 
• August 20-22, Washington 

• Heard from sponsors: Space Command, 

AFRL, NASA OCT. 

• Made In Space Inc. 

• Experts in additive manufacturing field. 

 

 
 Initial ISS Mission 

3D Print – Proof of Concept 
Experiment 

• Partnered with NASA to 
perform the “3D Printing in 
Zero-G Experiment”. 

• Proving ground for later 
technologies. 

• Launch manifested: SpaceX-5, 
2014. 

 



Meeting 2 
 

• November 12-14, Irvine 

• Will hear from NASA STMD. 

• Other experts in additive manufacturing field. 

• Tethers Unlimited. 

 

 

 
Tethers Unlimited 

received NIAC 

Phase II award for 

its Spiderfab work 

 

 



Next Steps for COSBAM 

 

• November meeting, 1-2 more meetings in early 

2014. 
 

• Preparation of report, delivery to NASA and USAF 

late spring/early summer. 

 

 



BACKUP SLIDES 



What is Additive Manufacturing? 

• $3 billion global 

industry in 2012* 

• $6.5 billion 

projected by 2019* 
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* Wohlers Report, 2012 

“Process of joining materials to make objects from 3D model data, usually 

layer upon layer, as opposed to subtractive manufacturing 

methodologies”  

http://www.youtube.com/watch?v=tsz9GUZv1IA


Evolution of the Field 
• Started in mid-1980’s as rapid prototyping 

– Method to quickly create product prototypes 

– Several processes developed in industry and academia, mostly plastics 

– Key support came from ONR, DARPA, and NSF 

• Progressed through 90’s and 00’s 

– New materials—metals (steel, Ti, others), ceramics 

– New processes improve material, surface properties, speed, energy efficiency 

– Field of competing processes now include fused deposition, laser sintering, e-beam 

melting, others 

• 2012-13 Industry Consolidation 
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Benefits and Drawbacks 

• Benefits: 

– Complexity for free—effort independent of design 

– Speeds up product development 

– Scale up from one 

• Mass customization 

• Competition on design/innovation, not labor/capital costs 

– Higher material yields/less waste 

– Reduces need for inventory 

• Drawbacks: 

– Expensive—materials and speed 

– Material and surface properties 

– Size limitations 
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Future 

• Processes will continue to improve 

– Use of new and multi-materials (5-10 yr) 

– Hybridization of techniques (5-20 yr) 

• Between AM processes 

• AM and subtractive processes 

– Parallelization of techniques (5-20 yr) 

– Closed-loop sensing and controls for QA/QC 

(5-10 yr) 

– More competition as patents expire (5-10 yr) 

– Volume-based build (>20 yr) 
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Applications 
• Aerospace  

– Engine parts 

– In situ manufacturing in space 

• Medical  

– Traditional materials (surgical tools, 

planning, implants, 5-10 year) 

– Biofabrication (regenerative med, drug 

testing/delivery, 10-20 year) 

• Consumer 

– Print products at home via digital design 

repositories (5-10 year) 

– New methods of product delivery—

Amazon model, Kinko’s model, iTunes 

model (5-10 year) 

– Democratization of design—more 

designers of more products (5-10 year) 
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Missions of Interest 
• Swarms 

– A standalone CubeSat mfg. platform 

could build swarms on demand on-

orbit. 

– Dedicate more mass towards 

propellant & keep units in orbit 

longer. 

– More cost effective method of 

replacing single units when needed. 

• Mission Flexibility 

– Any time you DON’T know what you 

need until you get there. 

• Secrecy  

– If you DO know what you need but 

you don’t want others to know. 

• Robotic Servicing Missions 

– Ie. DARPA Phoenix Mission 2.0. 
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Example 
spacecraft 

swarm(above). 
 

70% 3D Printed 
CubeSat, 
including 

propulsion, 
launched this 

year (right). 



Barriers 

• Lack of high-$ commercial funding 

• Cost competition with established processes 

• IP challenges—who owns, profits from digital designs 

• Liability and regulation 

– Who is responsible for self-manufactured digital designs? 

– FDA, DoD approval for use 

• Size, speed, property limitations 

• Lack of design tools 
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ASTM Technologies Material CURRENT Strengths CURRENT Weaknesses Surface Space 

Vat Photo-

polymerization  

Photopolymer Accurate compared to other technologies; creates 

relatively fine features; ideal for prototyping 

sensitive to radiation, may result in 

degradation in space; difficult to handle in 

space; limited long-term stability 

? - 

Material Jetting Photopolymer, 

wax 

Build material contained in “cartridges” so storage 

is less difficult than for vat-based processes;   

  

Liquid droplets can be problematic x - 

Binder Jetting Metal, polymer, 

ceramic, 

Foundry Sand 

great architecture for building structures 

from powders on the Moon or Mars; Allows for 

creation of large shapes without 

needing to bring all of the raw materials with you; 

a potentially good architecture for printed 

electronics in space 

Presence of both powders and liquid droplets; 

without post-processing material properties 

are weaker 

x - 

Material Extrusion Polymer Least expensive; Solid filaments and viscous 

melts make it highly controllable in a zero-gravity 

environment; Relatively cheap simple machine 

architecture makes it easy to customize a 

machine for Space; Can be used as a “concrete” 

manufacturing 

machine for creating structures on the Moon and 

Mars 

Weaker parts due to poor interlayer bonding; 

material is expensive 

x x 

Powder Bed Fusion Metal, polymer, 

ceramic 

Good material properties; relatively fine feature till 

0.1 mm; Lasers can melt or sinter almost anything 

Powders are problematic in zero gravity x - 

Sheet Lamination Hybrids, 

metallic, 

ceramic 

Raw material is easily transportable and simple to 

handle in a zero or low gravity environment 

Material inefficiencies and lack of recycling 

make it a poor choice for space 

– Lots of waste material 

? - 

Directed Energy 

Deposition 

Metal (powder, 

wire) 

Wire plus electron beam is a great combination;  

Needs a vacuum; Wire is more easily handled in 

low gravity; – Electron beams are energy efficient;  

A movable gantry system enables build-up of 

structures that are larger than AM machine; 

Powder plus laser might be a good platform for 

Mars or Moon 

have a high material deposition rate, but 

relatively low resolution 

x x 
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Other 
Processes 
(or hybrid) 

Manufacture spacecraft in orbit 

Complete* ? ? ? ? ? ? ? ? 

Components** x x x √ x x √ ? 

To be assembled manually x x x √ x x √ ? 

Robotically x x x √ x x √ ? 
Manufacture components* in 
orbit/on space station  x x x √ x x √ ? 

To be assembled manually x x x √ x x √ ? 

Robotically x x x √ x x √ ? 
Manufacture habitat or devices on a 
planetary body x x x √ x x √ ? 

Complete ? ? ? ? ? ? ? ? 

Components √ √ √ √ √ √ √ ? 

To be assembled manually √ √ √ √ √ √ √ ? 

Robotically √ √ √ √ √ √ √ ? 

*  
Need to be somewhat specific about 
functionality and materials 

** 
Need to be specific - to make a lens would require a different process/material than to make 
a valve, battery, gyroscope 


