

Solar Electric Propulsion: Introduction, Applications and Status

Dr. Roger Myers

Executive Director, Advanced In-Space Systems

Roger.Myers@rocket.com

425-702-9822

- Solar Electric Propulsion Overview
- Benefits and Applications
- Power Level Trends and Mission Drivers
- System Challenges
- Summary

What is Solar Electric Propulsion?

Use of solar electric power to create and accelerate ions to exhaust velocities >5x chemical rockets

*Each thruster option has different capabilities and system requirements

AEROJET / Three Classes of Electric Propulsion

Electrothermal

Gas heated via resistance Element, discharge, or RF interactions and expanded through nozzle

Electrostatic

lons created and accelerated in an electrostatic field

Electromagnetic

Plasma accelerated via interaction of current and magnetic field

- Resistojets
- Arcjets
- Microwave, ICR, Helicon

- Hall Thrusters
- Gridded Ion Engines
- Colloid Thrusters

- Pulsed Plasma
- MPD/LFA
- Pulsed Inductive

Primary Systems Today are Resistojet, Arcjet, Hall, and Gridded Ion Systems

AEROJET ROCKETDYNE **Electric Propulsion Options and Trades**

- Benefits:
 - Much higher specific impulse
 - Arcjets 600s
 - Hall Thrusters 1500 3000s
 - Ion thrusters 2500 10,000s
 - Other concepts (VASIMIR, MPD, PIT) in same range
 - Higher Isp results in much lower propellant mass
- Trades:
 - Need external source of power and electronics to match to the thruster
 - Thrust increases linearly with power
 - Trip time decreases as thrust increases
 - Power increases quadratically with lsp for a given thrust
 - Propellant mass decreases exponentially with lsp for a given ∆V

Typical Earth-space missions optimize between 1500 – 3000s lsp

In-Space Propulsion Dominates Spacecraft Mass Impact increases for Deep Space Missions

Some Factors Influencing Spacecraft Mass Allocations:

Mission: ∆V, duration, environments Technology changes: launcher size/capability, payload mass/volume, power system Policy changes: deorbit requirements, debris removal, insurance rates

About one-half of Everything Launched is In-Space Propulsion It is a Major Opportunity for Mission Affordability Improvement SEP Adoption Driven by Competitive Advantage

- General use started for station keeping
 - Vehicle power levels 5 10kW
 - EP thruster powers 0.5 2kW
 - First commercial use in 1980s
- Enabled launch vehicle competitions
- Reduced launch costs by reducing size of required launcher
- Low power SEP used on:
 - >250 satellites in Earth Orbit
 - Deep Space-1
 - Smart-1
 - Dawn

AEROIET

OCKETDYNE

• Hayabusa

Reduction in Launch Mass enabled by Arcjets Drove Launch Vehicle Competition and Cost Reduction

Teistar 4-Class (12 year mission) – benefits larger for longer missions

OPERATIONAL SATELLITES WITH ELECTRIC PROPULSION

Spacecraft Employing Aerojet Rocketdyne EP = 148

Recent Events Driving Acceptance of High-Power SEP

Launch Costs Continue to Increase

AEROJET

- Successful Rescue of DoD AEHF SV1 using Hall Thruster System for Orbit Raising
 - Baseline mission saves >2000lbf by doing ~50% of orbit raising using EP
 - SV-2 launched and operational
 - SV-3 launched and orbit raising now
- Boeing's Announcement of <u>All-Electric</u> 702-SP
 - Use gridded ion engines (L-3)
 - Enables dual-launch on Falcon-9
- Emergence of New Exploration Missions Requiring Efficient High-Mass Payload Delivery Within Constrained Budgets

LM's AEHF

All-Chemical Boeing 702MP (6-10kW)

Source: Space News

Mission Parameters

AEROJET.

Thrust ~ Power*Efficiency Isp

- Trip time ~ Mass/Thrust ~Mass/Power
- So, Faster SEP Trip Times Require Higher Power/Mass Ratios and Power Conversion Efficiency
 - Need lighter weight, high power solar arrays
 - Need lightweight, efficient power management and processing
- Trip times through radiation belts are long
 - Radiation tolerance critical

Spacecraft Power Level Increasing

Near-Term Higher Power SEP Benefits & Trades Analysis

Example: Payload delivered to Earth-Moon L2

Rocketdyne

Performance Curves Show Trades between Power, Trip Time, and Delivered Mass for a Given Launch Vehicle and Destination

- Using a S/C with 27 kW EP to thruster gives a transfer time of 4.5 months
- Using a S/C with 18 kW EP to thruster gives a transfer time of 6.7 months

Switching to SEP allows for a ~65% reduction in launch vehicle costs

XR-5 lsp of 1816 s and T/P of 62.22 mN/kW. GTO is 185x35786 km (28.5°). GEO is 35786x35786 km (0°)

Example #2: EML-2 Habitat Logistics Supply Deliver 20mt over 5 yrs using the TRL-9 Hall Systems

AEROJET 🦯

1.10 1.02 1.00 1.00 1.0v 0.94 **Potential** SEP, 27 kW Thruster Input Power* 90d 4Flts Fotal LV + S/C Cost (normalized) 90d 10Flts 0.90 total 0.18 0.18 4Flts 0.77 campaign 0.80 0.73 cost 90d 1.6y 2.0v 0.70 1.1y 0.65 7Flts 3Flts savings of 3Flts 0.61 6Flts 1.1y 59% vs. 0.60 0.53 1.4v 5Flts 0.52 0.50 0.45 5Flts chemical 0.50 1.6y 1.3v 2.0v 0.41 (up to 4Flts 7Flts 0.40 4Flts 2.1v 1.5v \$1.4B) 2.5y 6Flts 6Flts 3Flts 0.30 0.20 NO *EP CHEM Perf Solution 0.10 at On 2600s F9 v1.0 lsp 0.00 Delta IV H Atlas 551 Atlas 531 Falcon 9 v1.0

SEP solutions enabled significant total campaign cost savings of up to ~\$1.4 BILLION for this notional campaign

Example #3: Impact of In-Space Propulsion Technology on Launcher Requirements for Mars

Crew of 4 to Low Mars Orbit and back

Separating Cargo and Crew, and using SEP for Cargo and High Thrust Chemical or NTR for Crew, <u>decreases launcher</u> <u>requirements by 2X</u> High-Power SEP Dramatically Improves the Affordability of Space Missions for Multiple Customers

Many User Communities

It's All About Affordability

- Establish an efficient in-space transportation system to reduce mission cost
 - Use SLS and other launch vehicles along with efficient in-space transportation to reduce cost and increase science mission and exploration capability
- Near Term (next 5 years): 30 50kW SEP Vehicles for
 - Logistics in cis-lunar space
 - Larger scale robotic precursors (Asteroid Re-Direct Mission)
 - NOTE: These systems have broad applicability to DoD and other civil missions
- Mid-Term (5 15 years): 100 200kW SEP Vehicles for
 - Cargo pre-placement at destinations (Martian Moons, Lunar Orbit, etc.)
- Long-term (15- 20 years): 200 600kW SEP Vehicles for
 - Large cargo pre-placement (habitats, landers, Earth Return stages, etc.)
 - NOTE: "Vision System" includes reusability multiple trips through belts

Evolutionary Growth of SEP Systems will Keep Missions Affordable

SEP Subsystem Options and Trends

Power and Propulsion

To date, vehicle power systems are dominated by payload power:

For Vehicles where SEP Power is Dominant:

 Combine PMAD & PPU?
 "Direct Drive" EP from arrays?

SEP Vehicle Power System Architecture May Need Re-evaluation When SEP is Dominant Power Consumer

AEROJET SEP Power System Technology Challenges (1/3)

High Power Arrays

- Cell Efficiency
 - Currently ~40% in lab
 - Target is ~50% BOL
- Lightweight Structures
 - Current array P/M is ~ 70W/kg
 - Target is 200 400W/kg

- Launch Vehicle Packaging and Deployment Mechanisms
 - Current Stowed Volume is <20kW/m³
 - Target is 60 80 kW/m³
- Radiation tolerance
 - Capability and affordability will be enhanced if degradation can be reduced from current ~15% per trip to ~5% per trip without a large mass penalty

AEROJET SEP Power System Technology Challenges (2/3)

Power Management and Distribution Systems

- Efficiency
 - Currently ~92%
 - Target is ~95%
- Lightweight Thermal Management and Rejection
 - Current PMAD systems reject <2kW
 - Near-term target requires rejecting ~4kW
 - Mid-term target: 8 16kW
 - Long-term target: 20 30kW
 - Potential for high temperature electronics?
- Power transient handling
 - How to Handle eclipse transients with 50 100kW SEP System?
- Lightweight Energy Storage
 - May just turn off SEP system in eclipse to limit battery requirements
- Radiation tolerance rad hard parts availability and cost

AEROJET SEP Power System Technology Challenges (3/3)

EP Power Processing

- Efficiency
 - Today flight PPUs are 92 93% efficient
 - Must maintain performance over wide range of input voltages
 - •70 or 100V regulated in Earth Space
 - ~70 ~160V for deep space
- Thermal Management
 - Today's systems reject 400W/PPU, or ~ 800W during firing 2 at a time
 - Near term will need to handle 3 4kW
 - Long term will need to handle 20 40kW
- NOTE: Combination of PMAD and PPU can be a 10 15% hit on overall efficiency – may drive power system architecture if we can reduce the hit.
- Radiation tolerance: rad hard parts availability and cost
- Traditional vs. "Direct-Drive" power system architectures

High Reliability/Rad Hard parts availability

- Availability and Lead time on parts drives design
- Is it easier to change packaging for radiation tolerance?

Qualified power system designers and electronics parts experts

- Too many university EE departments went digital!
- Program uncertainties lead to retention issues

Propulsion: Thruster Options for Discovery

		NEVT		BDT 4000		CDT 100	CDT 140	тс
	NSIAR	INEXI	NEXT+XIPS PPU	BP1-4000	25-CM XIPS	SP1-100	591-140	16
Performance	ION	ION	ION	HALL	ION	HALL	HALL	ION
Power: Max:	2.3 kW	6.9 kW	4.5 kW	4.5 kW	4.5 kW	1.5 kW	4.5 kW	4.6 kW
Min:	450 W	~500 W	~500 W	~225 W	~225 W	~600 W	< 2.0 kW	2.4 kW
Isp	3200	4200 s	3600 s	2000 s	3600 s	1600 s	1800 s	4075-4300 s
Thruster Mass	8.9 kg	13.5 kg	13.5 kg	12.5 kg	13.5 kg	3.5 kg	8.5 kg	7.5 kg
Total Impulse, demonstrated	7 MN-s	34.3 MN-s	< 29.4 MN-s	8.7 MN-s	6.7 MN-s	2.7 MN-s	3 MN-s [†]	3.7 MN-s
Total Impulse, theory	10 MN-s	> 34.4 MN-s	< 19 MN-s	19 MN-s	11.4 MN-s	not determined	8.2 MN-s ⁺⁺	11.5 MN-s
Heritage:								
Manufacturer	L3	Aerojet- Rocketdyne	Aerojet- Rocketdyne	Aerojet- Rocketdyne	L3	Fakel	Fakel	QinetiQ
Flight Missions (previous or planned)	DS1, Dawn	None	None	AEHF (x6)	HS702 (manv)	SS/L (many) European (many) Russian (many)	Future Commerical	BepiColombo (2015)
Heritage for Deep Space	Full	None***	None***	Full	Full	Full	Full*	Full/Partial
Comments	No longer manufactured	Offered with cost credit in Discovery 2010						

* Full Heritage anticipated after qualification for Earth orbiting applications is complete.

*** Flight-like model has passed performance & environmental testing. A full flight qual model needs to be built & tested prior to first flight.

⁺ estimated as of Aug 2013

⁺⁺ planned duration 8.2 MN-s, throughput estimated

Credit: David Oh, JPL

PPU Options for Discovery

	NSTAR	NEXT	NEXT+XIPS PPU	BPT-4000	25-cm XIPS	SPT-100	SPT-140	Т6
Performance								
Max Power	2.3 kW	6.9 kW	4.5 kW	4.5 kW	4.5 kW	1.5 kW	4.5 kW	4.6 kW
PPU Mass	14.5 kg	33.9 kg	Same as XIPS	12.5 kg	21.3 kg	7.5 kg	15 kg	23 kg
PPU Efficiency	92% at 2.4 kW	95% at 7.1 kW	92% at 4.5 kW	92% at 4.5 kW	91%-93%	94% at 1.35 kW thruster power	not available	92%-95%
Redundancy/ Cross Strapping	1 PPU - 2 thrusters	1 PPU–2 thrusters	1 PPU-2 thrusters	1 PPU–1 thruster	1 PPU–2 thrusters	1 PPU–2 thrusters	1 PPU–4 thrusters	1 PPU–2 thrusters
Heritage:								
Manufacturer	L3	L3	L3	Aerojet- Rocketdyne	L3	SSL	SSL	Astrium Crisa
PPU Input Voltage	80V-145V	80V-160V	Same as XIPS	OTS: 68V-74V OTS*: 55V-85V	OTS: 95V-100V OTS*: 90V-110V Tested: 80V-120V	OTS: 95V-105V OTS*: 80V-120V	OTS: 95V-105V	OTS: 95-100V
Flight Missions (previous or planned)	DS 1 / Dawn	None	None	AEHF (x6)	HS702 (x many)	SS/L (many)	Future Commerical	BepiColombo (2015)
Heritage for Deep Space	Full	None	Partial	Full/Partial**	Full/Partial**	Full/Partial**	Full/Partial**,†	Full/Partial**
Comments	No longer manufactured	Offered with cost credit in Discovery 2010						

OTS = "Off-the-Shelf"

* Off-the-shelf w/minimal modifications (requires delta or requal)

** Heritage application dependent.

⁺ Full Heritage anticipated for some applications after qualification for Earth orbiting applications is complete.

Off-the-Shelf PPU fully qualified to support unregulated voltage range would greatly benefit deep space missions

Credit: David Oh, JPL

Hall Thruster Family

- Aerojet Rocketdyne has developed a family of Zero Erosion[™] Hall thrusters
 - Semi-empirical life-model and design rules developed and validated in 1998-2000, applied to all thrusters since then
 - Provides capability for very high total impulse missions as insulators stop eroding
 - Beginning of life configuration dictated by launch and IOC environments
 - JPL has developed "Magnetic Shielding" model which provides detailed understanding of physics
- Power level selection based on market demand XR-5 (5kW system, formerly called BPT-4000) Flying on 3 DoD AEHF spacecraft, in production
 - XR-12 (12kW system) Ready for qualification, PPU at BB level
 - XR-20 (20kW system) Engineering thruster in development

Zero Erosion design rules enable very long-life, high energy missions

AEROJET

XR-5

XR-12

XR-20

Summary

- SEP Can Enable a 2X Reduction in Launch Mass for a Given Mission If Longer Trip Times can be Accepted
 - Where affordability is critical, SEP is enabling
- Increasing Space Vehicle Power/Mass Ratio is Critical to Reducing Trip time!
- <u>SEP</u> Power Levels are increasing from the current 5 10kW to:
 - Near-term: 30 50kW
 - Mid-term: 100 200kW
 - Long-term: 200 600kW
- Critical SEP Challenges include:
 - Ground life testing of higher power systems (fidelity, cost and schedule)
 - Solar Array efficiency, structure mass, and storage volume
 - PMAD Efficiency, thermal control, and radiation tolerance
 - Power Processor voltage range, performance, and radiation tolerance

A First Step: Demonstrate SEP Cargo Transportation

Using near-term technology in new ways to establish a new paradigm for in-space operations and take our first steps in deep space exploration

BACKUP SLIDES

Resistojets: EHTs and IMPEHTs

High Temperature resistive coil adds energy to hydrazine decomposition products

Arcjet Cross-section

AEROJET

Arcjet Systems are Flying on Over 50 spacecraft today

How Does a Hall Thruster Work?

- Neutral gas, typically xenon, is injected into discharge channel
- Electrons emitted by the cathode are attracted towards anode
- These electrons collide with and ionize (charge) gas atoms
- Ionized atoms are accelerated by electric and magnetic fields to >20 km/second
- The beam of these ions create
 the thrust

Flight Hall Thruster Propulsion Subsystem

System Elements

AEROIET

Power Processor Unit

Hall Thruster

Cable Harness Assemblies Xenon Flow Controller

BPT-4000

- Hall Thruster Multi-mode:
 - 3-4.5 kW 300 400 V
 - Isp: 1730 2060 sec,
 - Thrust: 176 300 mN
- PPU: 1.5 4.5 kW power processing
- Xenon Feed Controller provides propellant to both anode and cathode
- Flying on Advanced EHF for orbit raising and north-south station-keeping

Higher Power Systems

 10 – 100kW Hall thrusters have been demonstrated in the laboratory

Hall thrusters are flying on a wide range of U.S. and international spacecraft today

NEXT Gridded Ion Thruster

- 7 kW Max Power
- >4100 s Spec. Impulse
- Xenon propellant
- Recently passed 30khrs of operation in ground test

Others

 Lower power ion thrusters flying on Boeing 702 and NASA's DAWN spacecraft

Direct Drive Architecture Option

Direct Drive eliminates high power converter by connecting thruster "directly" to the array

- Requires high voltage array that matches thruster input requirements
- Uncertainties include :

AEROJET

- System stability plasma can close circuit to solar array
 - May need to redesign array or ensure thruster plume does not close the circuit
- Array survivability and dynamic response to thruster transients filter design and power losses