

Principles for Working with Big Data

Juliana Freire

Visualization and Data Analysis (ViDA) Lab
Computer Science & Engineering
Center for Urban Science & Progress (CUSP)
Center for Data Science
New York University

The Big Data Analysis Pipeline

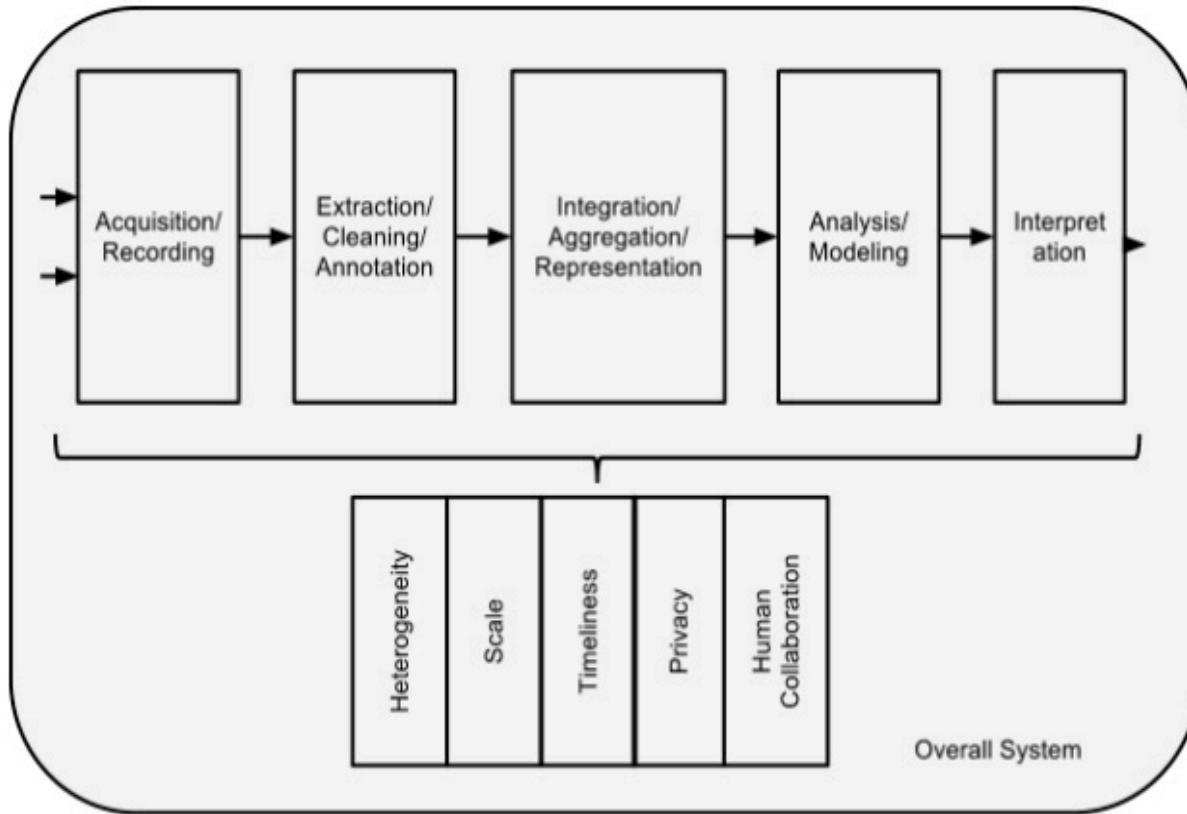


Figure 1: The Big Data Analysis Pipeline. Major steps in analysis of big data are shown in the flow at top. Below it are big data needs that make these tasks challenging.

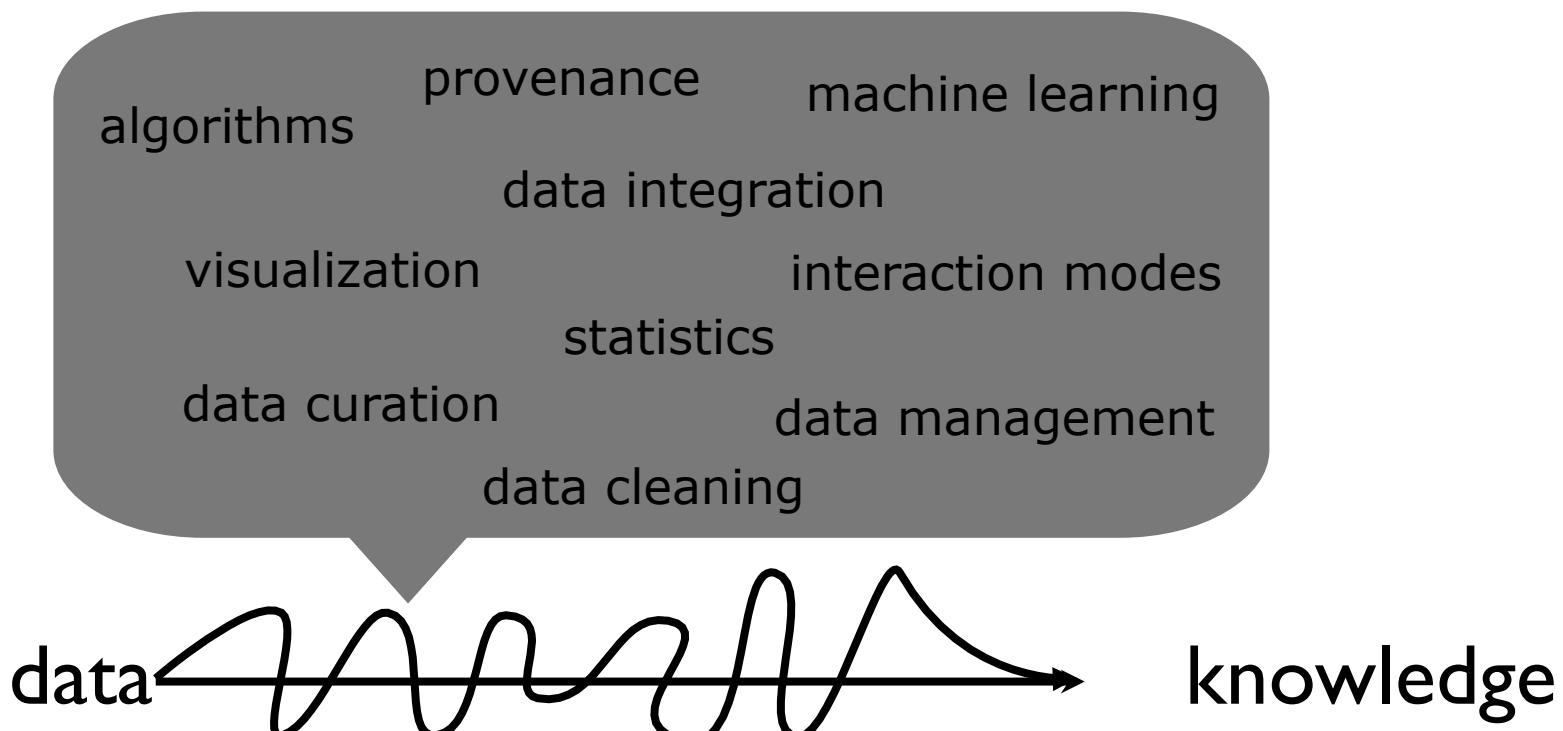
Challenges and Opportunities with Big Data, CRA 2012
<http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf>

NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

Big Data: What is hard?

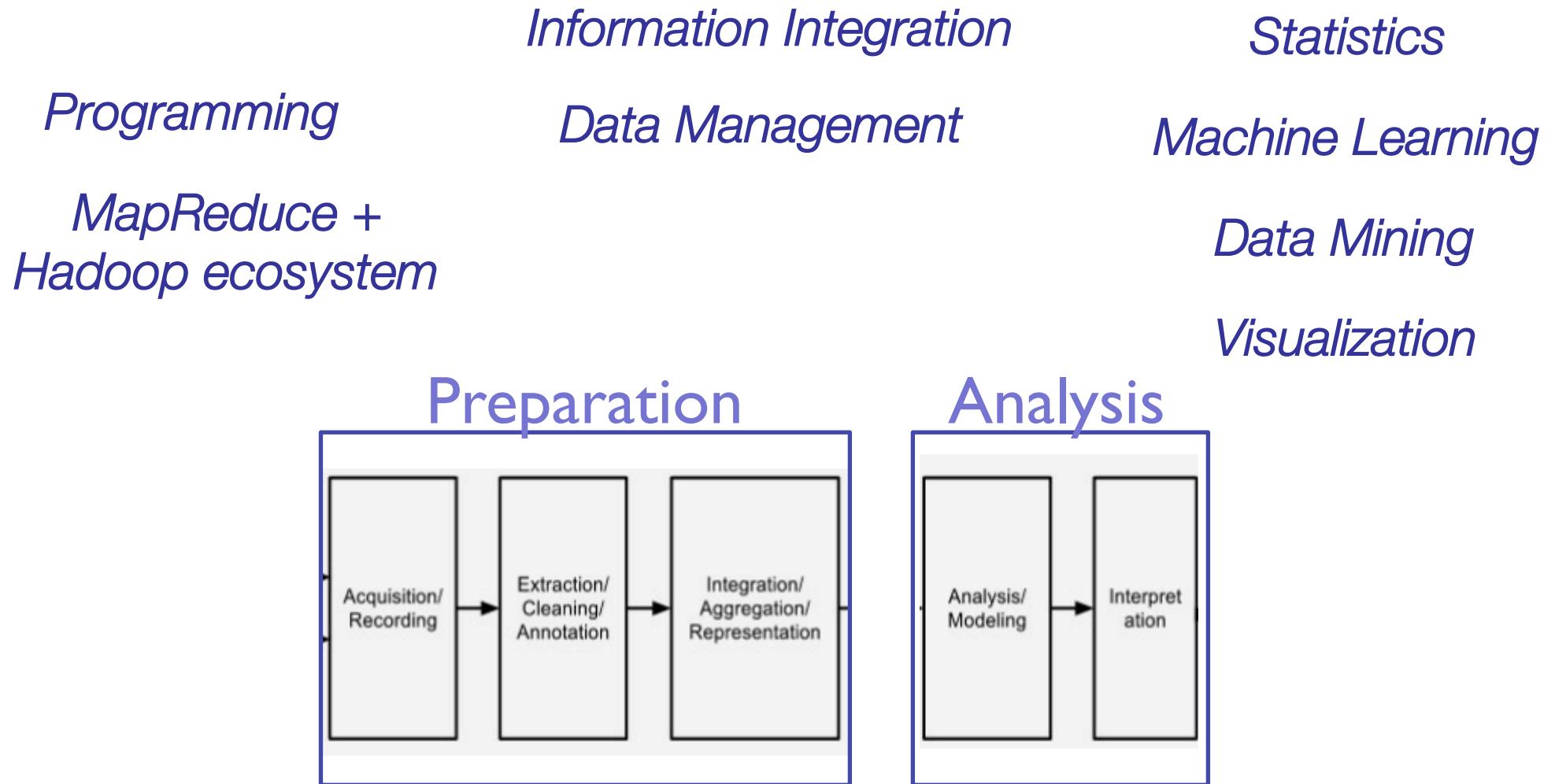
- Scalability for batch computations is *not* hard
 - Lots of work on distributed systems, parallel databases, ...
 - Elasticity: Add more nodes!
- Scalability for people is!
 - Data exploration is hard regardless of whether data are big or small



NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

Principles for Working with Data Big Data



(Big and Small) Data Exploration

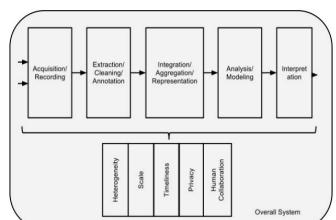
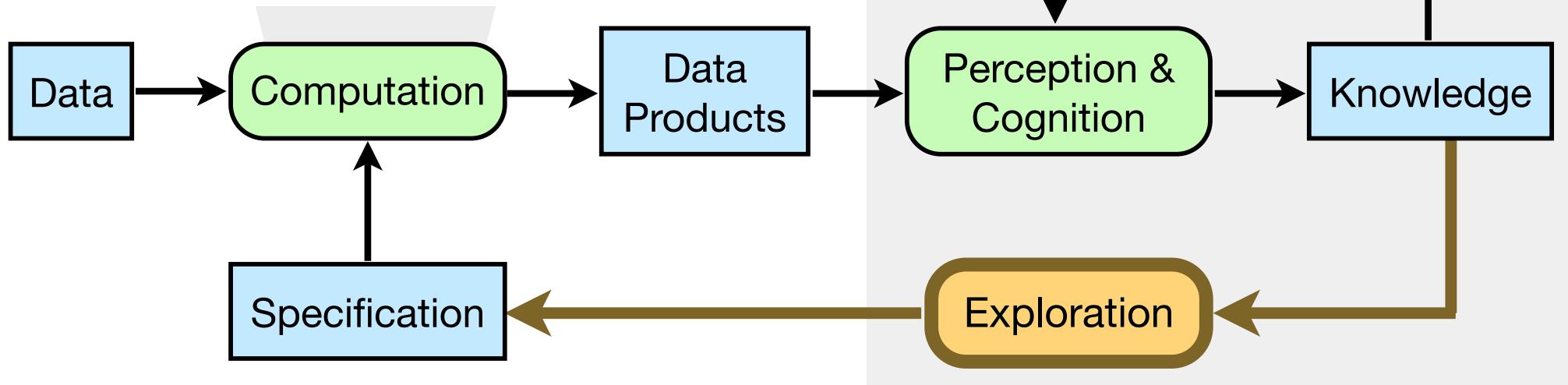


Figure 1: The Big Data Analysis Pipeline. Major steps in analysis of big data are shown in the flow at top. Below it are big data needs that make these tasks challenging.



[Modified from Van Wijk, Vis 2005]

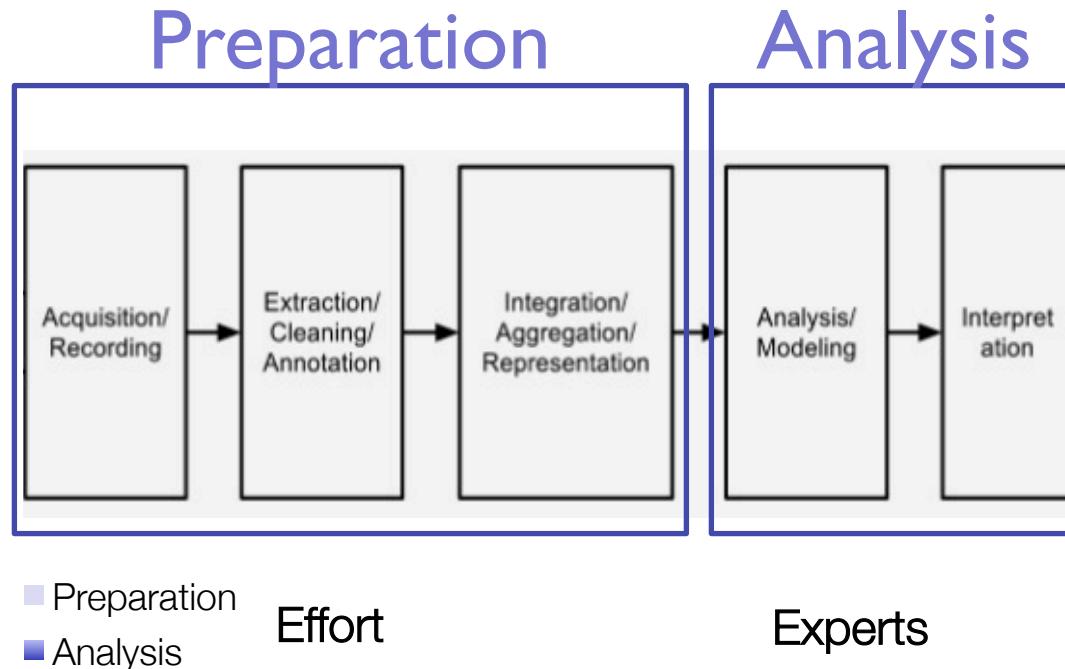
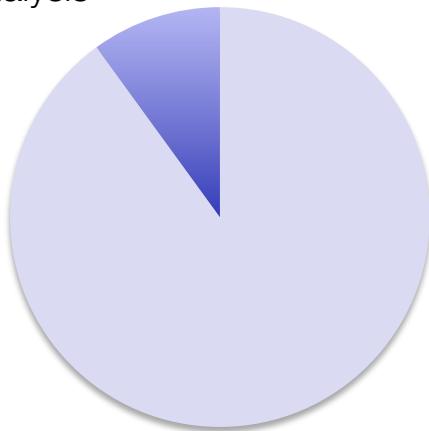
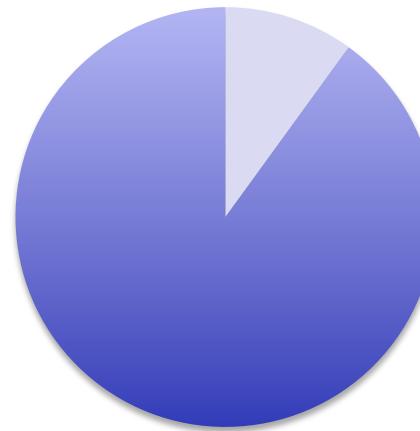
- Iterative process to generate and test hypotheses
- *Easy to get lost*---derive a result and not remember how you got there
- Need to capture ***provenance*** of the exploration process – for transparency, reproducibility and knowledge re-use

Provenance Management

NYU

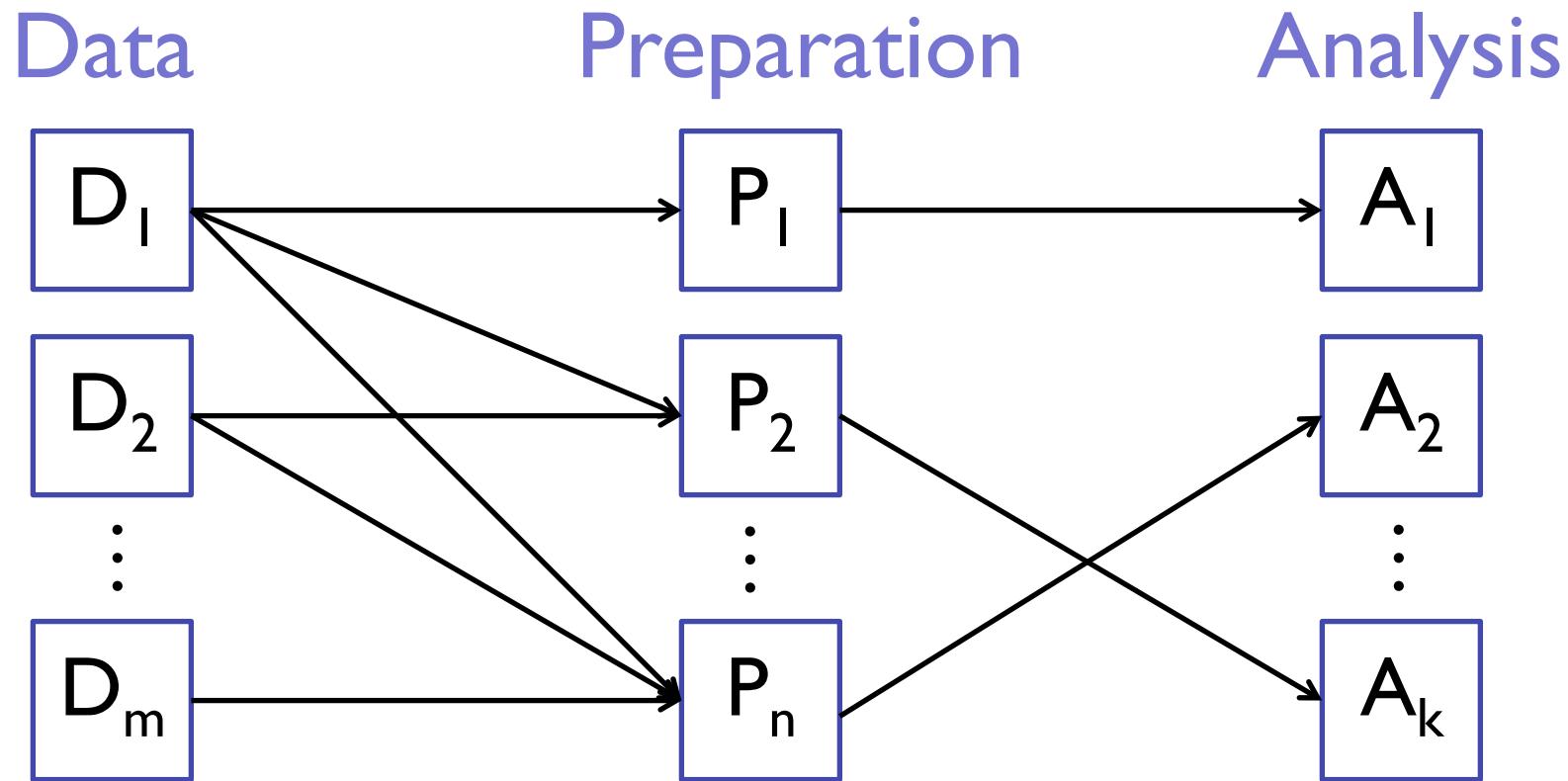
POLYTECHNIC SCHOOL
OF ENGINEERING

The Big Data Conundrum



The Big Data Conundrum

- Data preparation is a bottleneck
- Limits analyses



Big Data: A Moving Target

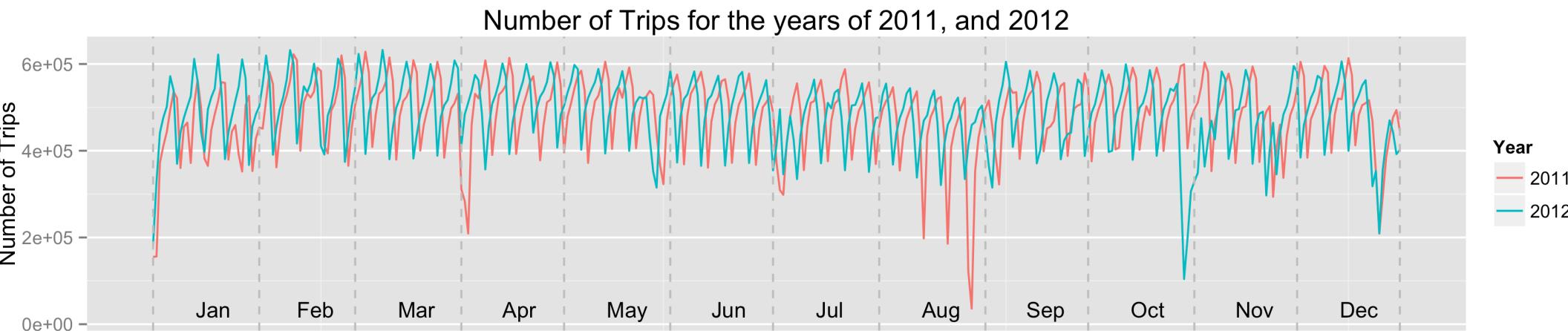
- New data (and analyses) bring new challenges
- Many tools, but many more needs...
- Knowing the principles is key to build effective solutions

NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

Big Data: Experience from the Trenches

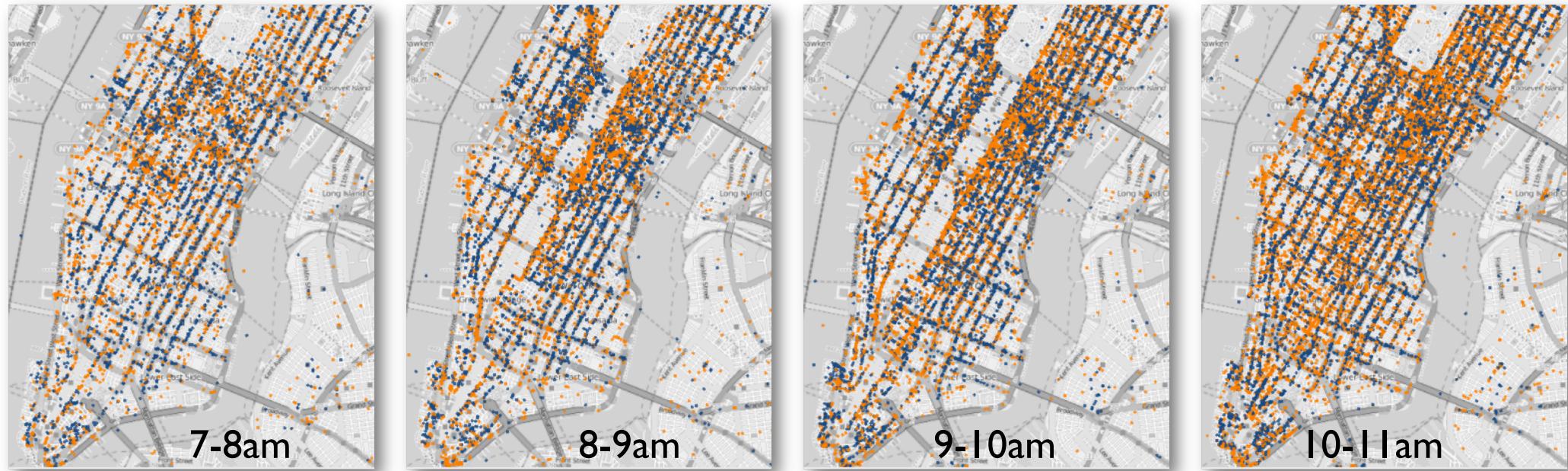
- NYC taxis as sensors for city life: economic activity, human behavior, mobility patterns, ...
- Taxi data are “big”, complex and dirty
 - ~500k trips/day
 - Multiple variables: *spatial temporal + trip attributes*
- Domain scientists and decision makers are unable to explore the *whole* data



NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

A Study of NYC Taxis



- Requirement: support interactive queries
- Raw data: 520M trips (3 years) -- 150 GB in 48 CSV files
 - 12 fields, 2 spatial-temporal attributes

A Study of NYC Taxis: Preparation

	SQLite	PostgreSQL
Storage Space in GB	100	200
Building Indices in Minutes (One Year)	3,120	780

- Spatio-temporal index based on out-of-core kd-tree [Ferreira et al., TVCG 2013]
 - Deployed at TLC and DoT!
 - New index that leverages GPU – 2 orders of magnitude speedup [Vo and Doraiswami, in progress]

Query	MongoDB (1 GPU)		PostgreSQL			ComDB		
	Time(sec)	Time(sec)	Time(sec)	Speedup (1 GPU)	Speedup (3 GPUs)	Time(sec)	Speedup (1 GPU)	Speedup (3 GPUs)
1	0.237	0.103	141.8	598	1376	136.9	578	1329
2	0.199	0.065	129.2	649	1987	119.6	601	1840
3	0.202	0.093	97.1	480	1044	39.4	195	423
4	0.183	0.069	103.7	566	1502	25.6	140	371
5	0.361	0.159	106.3	294	668	23.8	66	149
6	0.325	0.174	102.6	315	589	28.9	89	166

Seconds

Seconds

NYU

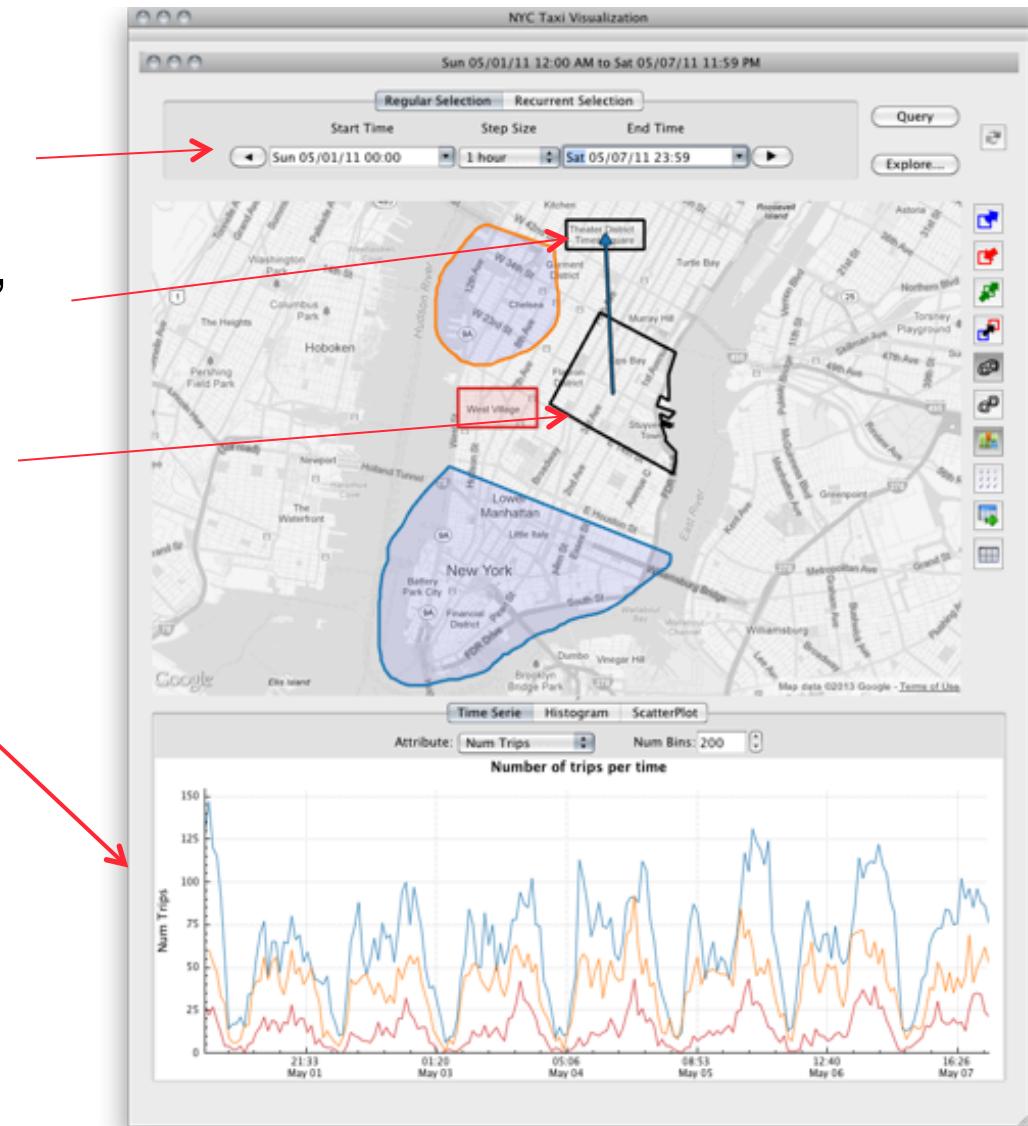
POLYTECHNIC SCHOOL
OF ENGINEERING

A Study of NYC Taxis: Analysis

```
SELECT *
  FROM  trips
 WHERE pickup_time in (5/1/11,5/7/11)
       AND
  dropoff_loc in "Times Square"
       AND
 pickup_loc  in "Gramercy"
```

Interactively explore data through the map view and plot widgets

New, scalable, map rendering infrastructure



NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

[Ferreira et al., IEEE TVCG 2013]

Food for Thought

- The expertise gap
 - Domain experts do not know what is possible
 - Techies do not understand the domain
 - π -shaped scientists [A. Szalay]
- Data scientists will solve this problem! – or not...
 - You need at least 3 experts to *make* data scientist: DB, ML/Stat, Vis
- Has computer science (and data management) research failed?
Yes – we don't have a good track record of developing *usable tools*
- Or is this problem just too hard?
Yes – the complexity is often underestimated

NYU

POLYTECHNIC SCHOOL
OF ENGINEERING

Thanks