
New Developments on OPF Problems

Daniel Bienstock, Columbia University

April 2016

Organization:

• Intro to OPF and basic modern mathematics related to OPF

• Newer results, including basic methodologies for polynomial optimization

• Slower introduction to underlying mathematics (runs past end of webinar)

Remarks

• One hour is not enough! Read citations (end of presentation).

• In most cases we present an outline of results with some depth removed.

INTRO

Power flow problem in its simplest form

Power flow problem in its simplest form

Parameters:

• For each line km, its admittance bkm + jgkm = bmk + jgmk

• For each bus k, voltage limits V min
k and V max

k

• For each bus k, active and reactive net power limits

Pmin
k , Pmax

k , Qmin
k , and Qmax

k

Variables to compute:

• For each bus k, complex voltage ek + jfk

Notation: For a bus k, δ(k) = set of lines incident with k

Basic power flow problem

Find a solution to:

Pmin
k ≤

∑
km∈ δ(k)

[
gkm(e2

k + f 2
k)− gkm(ekem + fkfm) + bkm(ekfm − fkem)

]
≤ Pmax

k

Qmin
k ≤

∑
km∈ δ(k)

[
−bkm(e2

k + f 2
k) + bkm(ekem + fkfm) + gkm(ekfm − fkem)

]
≤ Qmax

k

(V min
k)2 ≤ e2

k + f 2
k ≤ (V max

k)2,

for each bus k = 1, 2, . . .

Many possible variations/extensions, plus optimization versions

Quadratically constrained, quadratic programming problems

(QCQPs)

min f0(x)

s.t. fi(x) ≥ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic (each Mi is n× n, wlog symmetric)

Folklore result: QCQP is NP-hard

... and in practice QCQP can be quite hard

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

we have that W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

we have that W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

This is called the “integer partition” (or “subset sum”) problem.

It is NP-hard when the wi are large. It is, thus, weakly NP-hard.

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

we have that W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

This is called the “integer partition” (or “subset sum”) problem.

It is NP-hard when the wi are large. It is, thus, weakly NP-hard. But

can be approximately solved.

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

this is the same as, for big M,

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b and x ∈ {−1, 1}n.

this is the same as, for big M,

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

so linearly constrained QCQP is as hard integer optimization

NO nice approximation algorithms exist for this class of problems

They are called strongly NP-hard

And how about AC-OPF – a special case of QCQP?

• Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is

weakly NP-hard on trees

• Bienstock and Verma (2008): AC-OPF is strongly NP-hard on general

networks

• Bienstock and Muñoz (2014): AC-OPF can be approximated on

trees, and more generally on networks of small “tree-width”

Even more general than QCQP:

Polynomially-constrained problems.

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Observation. Can be reduced to QCQP.

Example: find a solution for 3v6w − v4 + 7 = 0.

Even more general than QCQP:

Polynomially-constrained problems.

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Observation. Can be reduced to QCQP.

Example: find a root for 3v6w − v4 + 7 = 0.

Equivalent to the system on variables v, v2, v4, v6, w, y and c:

c2 = 1

v2 − cv2 = 0

v2
2 − cv4 = 0

v2v4 − cv6 = 0

v6w − cy = 0

3cy − cv4 = −7

This is an “efficient” (polynomial-time) reduction

Back to general QCQP

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

So if SR has a rank-1 solution, the lower bound is exact.

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

So if SR has a rank-1 solution, the lower bound is exact.

Unfortunately, SR typically does not have a rank-1 solution.

Theorem (Pataki, 1998):

An SDP

(SR): min M •X
s.t. N i •X ≥ bi i = 1, . . . ,m

X � 0, X an n× n matrix,

always has a solution of rank O(m1/2), and there exist examples where
this condition is attained.

Observation (Lavaei and Low):
The SDP relaxation of practical AC-OPF instances can have a rank-1 solu-
tion, or the solution can be relatively easy to massage into rank-1 solutions
(also see earlier work of Bai et al)

Can we leverage this observation into practical, globally optimal algorithms
for AC-OPF?

In the context of AC-OPF

Recall: in AC-OPF we denote the voltage of bus k as ek + jfk

Power flow basic equations:

Pmin
k ≤

∑
km∈ δ(k)

[
gkm(e2k + f 2k)− gkm(ekem + fkfm) + bkm(ekfm − fkem)

]
≤ Pmax

k

Qmin
k ≤

∑
km∈ δ(k)

[
−bkm(e2k + f 2k) + bkm(ekem + fkfm) + gkm(ekfm − fkem)

]
≤ Qmax

k

(V min
k)2 ≤ e2k + f 2k ≤ (V max

k)2,

for each bus k = 1, 2, . . . , n

• A direct SDP relaxation will produce a 2n× 2n matrix

• Or we can work directly with complex quantities

Recall:

• Power injection on line km = VkI
∗
km = Vky

∗
km(V ∗k − V ∗m) = |Vk|2y∗km − y∗kmVkV ∗m.

• For systems that are voltagewise tightly constrained, |Vk| ≈ 1 (p.u.)

• So it is important to have a low-rank matrix with entries VkV
∗
m.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Moment Relaxations

• Introduce a variable Xπ used to represent each monomial xπ of order ≤ d, for some integer d.

• This set of monomials includes all of those appearing in the polynomial optimization problem as
well as x0 = 1.

• If we replace each xπ in the formulation with the corresponding Xπ we obtain a linear relaxation.

• LetX denote the vector of all such monomials. Then XXT � 0 and of rank one. The semidefinite
constraint strengthens the formulation.

• Further semidefinite constraints are obtained from the constraints.

Challenges and opportunities

• Semidefinite programs can be very difficult to solve, especially large
ones. Poor numerical conditioning can also engender difficulties.

• Even for d = 2, an AC-OPF instance on a large grid can yield a large
SDP, and problematic values for physical parameters (impedances) can
yield difficult numerics.

• However, practical AC-OPF instances tend to arise on networks with
structured sparsity: low tree-width.

• Low tree-width naturally translates into structured sparsity of the matri-
ces encountered in the solution of the SDPs

CAUTION

CAUTION

sparsity 6= small tree-width

e.g. a k × k grid (max degree 4) is sparse but has treewidth k

most authors write “sparsity” but mean structured sparsity

Challenges and opportunities

• Semidefinite programs can be very difficult to solve, especially large
ones. Poor numerical conditioning can also engender difficulties.

• Even for d = 2, an AC-OPF instance on a large grid can yield a large
SDP, and problematic values for physical parameters (impedances) can
yield difficult numerics.

• However, practical AC-OPF instances tend to arise on networks with
structured sparsity: low tree-width.

• Low tree-width naturally translates into structured sparsity of the matri-
ces encountered in the solution of the SDPs

• This feature can be exploited by SDP algorithms: the matrix comple-
tion theorem

• This point has been leveraged by several researchers: Lavaei and Low,
Hiskens and Molzahn, and others

Newer Results on OPF

Obtaining low-rank near-optimal solutions to SDP
relaxations

(Madani, Sojoudi, Lavaei)

Key points:

•Optimal solution to SDP relaxation of OPF may have high
rank – even if optimal or near-optimal solutions have low rank,
or even rank 1.
Remark. Interior point algorithms for SDP tend to find highest rank optimal solutions.

•We need efficient procedures to find such solutions.

Obtaining low-rank near-optimal solutions to SDP
relaxations

(Madani, Sojoudi, Lavaei)

Key points:

•Optimal solution to SDP relaxation of OPF may have high
rank – even if optimal or near-optimal solutions have low rank,
or even rank 1.
Remark. Interior point algorithms for SDP tend to find highest rank optimal solutions.

•We need efficient procedures to find such solutions.

Typical objective of AC-OPF: minimize cost of active power generation

min
∑

k∈G fk(Pk)

G = set of generators, Pk = active power generation at bus k
fk = a convex quadratic
→ potentially, many solutions to SDP attain same

∑
k∈G fk(Pk)

Obtaining low-rank near-optimal solutions to SDP
relaxations

(Madani, Sojoudi, Lavaei)

Perturbed objective for AC-OPF:

min
∑

k∈G fk(Pk) + ε
∑

k∈GQk

Qk = reactive power generation at bus k

Why:

• ε small does not change problem “much”

• penalization tends to select a subset of (near) optimal solutions which
additionally incur low reactive power generation

• can be argued that the penalization should decrease the rank of the n×n
matrix with entries Re(VkV

∗
m)

Improving SDP relaxations of AC-OPF
Molzahn, Hiskens, and Molzahn, Josz, Hiskens, Panciatici

1. SDP relaxation can sometimes fail; relying on the (full) higher moment
relaxations can yield tighter convex relaxations but at huge computational
cost.

An alternative: selectively use higher-order relaxations at different buses, in
order to (locally) better represent the power flow equations at such buses.

HEURISTIC

(a) Construct a set of “bags” (sets of nodes) such that each line has both ends in at least one bag,
and such that the largest such bag is as small as we can make it (remark: this is an estimate of
treewidth).

(a.1) Initially we use as the monomials for the moment relaxation the set of all pairs of nodes that appear
in each bag.

(b) Solve relaxation of OPF and construct nearest rank-1 matrix to the solution to the SDP (Ekart-
Young metric).

c) This solution implies a vector of voltages and power injections. For each “bag”, consider the bus
with the highest infeasibility (e.g. power flow mismatch); use a heuristic rule that parameterizes
this infeasibility to add further momonials chosen from subsets of that bag (more infeasible ⇒
higher-order moments). Repeat.

Improving SDP relaxations of AC-OPF
Molzahn, Hiskens, and Molzahn, Josz, Hiskens, Panciatici

2. SDP (or moment) relaxation relaxation often prove tight lower bounds
on AC-OPF; but how do we recover near-optimal rank-1 solutions?

IDEA:

(a) First, let c∗ be the value of the SDP relaxation and let ε > 0 be a desired
tolerance. Suppose we add the constraint

OPF cost ≤ c∗(1 + ε)

to the constraints in the relaxation.

(b) Assuming (as one hope) there is a feasible solution to AC-OPF of cost
≤ c∗(1 + ε) this constraint is not limiting. But we need to find a

rank-1 solution that has this cost.

(c) The final ingredient: modify the objective in AC-OPF so as to more
naturally produce rank-1 solutions. The authors propose a function that
better accounts for reactive power injections.

Note: Step (a) makes it more likely that the objective modification in (c)
does not produce much more expensive solutions.

Improving SDP relaxations of AC-OPF
Molzahn, Hiskens, and Molzahn, Josz, Hiskens, Panciatici

3. SDP (or moment) relaxation relaxation often prove tight lower bounds
on AC-OPF; but not always. A conjecture was (is?) that this behavior is
related to the particular physical characteristics of the example at hand.

For example, an early idea was to perturb resistances so that they are all
positive and large enough.

However, the authors provide a class of 3-bus examples where two equiv-
alent reformulations give rise to SDP relaxations of very different strength.

Remark. In the traditional 0-1 integer programming world, the idea that
a problem can be reformulated so as to better leverage the strength of a
particular solution technique is well-known; and general principles have been
derived. An interesting question is whether such thinking can be extended
to the AC-OPF setting (or to polynomial optimization in general).

Better SOCP Relaxations (Kocuk, Dey, Andy Sun)

• Use SOCP instead of SDP to obtain tight relaxations that are (much)
easier to solve

• Several observations lead to interesting inequalities.

Idea 1. For a bus k and line km denote ckk = e2k + f2
k (square of voltage magnitude), ckm = ekem + fkfm

and skm = ekfm − fkem.
Then (prior observation by Expósito and Ramos, Jabr) we have

c2km + s2km = ckkcmm,

which is nonconvex, but can be relaxed as the SOCP constraint

c2km + s2km ≤ ckkcmm,

→ Use a convex formulation that involves these quantities.
Moreover, let ṽ = (e1, e2, . . . , en, f1, . . . , fn)T and W = vvT . Then the following hold

ckm = Wk,m +Wk+n,m+n

skm = Wk,m+n −Wm,k+n

skk = Wk,k +Wm+n,m+n

Given a vector of values c, s we can efficiently check if a positive semidefinite matrix W satisfying
these properties exists. And if not: we obtain a cut that we can use to strengthen the formulation.
This gives rise to an iterative (cutting-plane). algorithm.

Better SOCP Relaxations (Kocuk, Dey, Andy Sun)

Idea 2. The c, s variables can be used to better describe relationships
among voltages.

Given a cycle C, we must have
∑

km∈C θkm = 0 (here θkm = θk − θm)

This can be relaxed into the condition cos
(∑

km∈C θkm
)

= 1.

But note that e.g. cos(θkm) = ckm√
ckkcmm

(and likewise with sin(θkm)).

Furthermore, given a cycle C, we can expand cos(
∑

km∈C θkm) into a
polynomial in the quantities cos(θkm) and sin(θkm) (over all km ∈ C).

• This yields a degree- |C| homogeneous polynomial equation in the quan-
tities ckm and skm.

• This equation can be approximately convexified (linearized!) using the
McCormick reformulation trick.

• Relationship with higher-order moment relaxations?

QC Relaxation (Coffrin, Hijazi, Van Hentenryck)
• Approximates trigonometric relationships and bilinear expressions

• Application to AC-OPF yields a convex relaxation

Given buses k and m, with voltage magnitudes vk, vm and phase angles θk and θm,

VkV
∗
m = vkvk cos(θk − θm) + jvkvm sin(θk − θm)

To estimate (relax) expressions of this sort, we use two ideas.
Idea 1. For angle φ small enough, we can upper bound

sin(φ) ≤ cos(φ/2)(φ− φu/2) + sin(φu/2),

where φ ≤ φu, and a similar lower bound can be obtained, and likewise cos(φ) can be bounded.
Idea 2. (McCormick relaxation). The convex hull of a set of the form

{xy : xL ≤ x ≤ xU , yL ≤ y ≤ yU}

(where xL, xU , yL, yU are parameters) is given by four linear inequalities, e.g. xy ≥ xLy + yLx− xLyL.

By first applying Idea 1 to the real and imaginary parts of VkV
∗
m and then repeatedly applying Idea

2, we obtain convex approximations to a number of expressions arising in power flow formulae.

• This approach yields the aforementioned convex relaxation

• Initial numerical experiments appear very promising

New developments on Polynomial Optimization

Cut-and-branch for complex QCQP
(Chen, Atamtürk, Oren)

Complex QCQP:

Min x∗Q0x + Re(c∗0x) + b0

s.t.

x∗Qix + Re(c∗ix) + bi ≥ 0, i = 1, . . . ,m

bounded x ∈ Cn

Cut-and-branch for complex QCQP
(Chen, Atamtürk, Oren)

SDP relaxation:

Min < Q0, X > + Re(c∗0x) + b0

s.t.

< Qi, X > + Re(c∗ix) + bi ≥ 0, i = 1, . . . ,m

bounded x ∈ Cn(
1 x∗

x X

)
� 0.

Cut-and-branch for complex QCQP
(Chen, Atamtürk, Oren)

SDP relaxation:

Min < Q0, X > + Re(c∗0x) + b0

s.t.

< Qi, X > + Re(c∗ix) + bi ≥ 0, i = 1, . . . ,m

bounded x ∈ Cn(
1 x∗

x X

)
� 0.

Theorem. An n× n matrix has rank 1 if and only if all of its 2× 2
principal minors are zero.

• Provides a venue for finding violated inequalities

•Algorithm: solve current relaxation (starting with SDP relaxation) then
if rank > 1, then either cut or branch (spatial branching) using the
Theorem to identify a matrix entry to work with. Repeat.

Cut-and-branch for complex QCQP
(Chen, Atamtürk, Oren)

Cutting. Given parameters L11, U11, L12, U12, L22, U22, consider the
set of Hermitian matrices (

W11 W12

W12 W22

)
where Wpq = Wpq + jTpq that satisfy

L11 ≤ W11 ≤ U11, L22 ≤ W22 ≤ U22

L12W12 ≤ T12 ≤ U12W12

W11W22 = W 2
12 + T 2

12

This represents a relaxation of the (positive-semidefinite, rank≤ 1) condition.

The authors provide a description of the convex hull of the set of such
matrices. Any inequality valid for the convex hull can be applied to any
2× 2 principal submatrix of the matrix X in the formulation.

New LP Hierarchies (Lasserre, Toh, Yang)

Consider the polynomial optimization problem

f∗
.
= Min f (x)

s.t.

gj(x) ≥ 0, j = 1, . . . ,m

where f (x) and the gj(x) are polynomials.

New LP Hierarchies (Lasserre, Toh, Yang)

Consider the polynomial optimization problem

f∗
.
= Min f (x)

s.t.

gj(x) ≥ 0, j = 1, . . . ,m

where f (x) and the gj(x) are polynomials.

Let d ≥ 1 integral. Then

f∗ = Min f (x)

s.t.
m∏
j=1

gj(x)αj(1− gj(x))βj ≥ 0 ∀(α, β) ∈ N2m
d

Here, N2m
d is the set of nonnegative integer vectors α1, . . . , αm, β1, . . . , βm

with ∑m
j=1αj ≥ d,

∑m
j=1 βj ≥ d

New LP Hierarchies (Lasserre, Toh, Yang)

Consider the polynomial optimization problem

f∗
.
= Min f (x)

s.t.

gj(x) ≥ 0, j = 1, . . . ,m

where f (x) and the gj(x) are polynomials.

Let d ≥ 1 integral. Then

f∗ = Min f (x)

s.t.
m∏
j=1

gj(x)αj(1− gj(x))βj ≥ 0 ∀(α, β) ∈ N2m
d

Here, N2m
d is the set of nonnegative integer vectors α1, . . . , αm, β1, . . . , βm

with ∑m
j=1αj ≥ d,

∑m
j=1 βj ≥ d

Lagrangian relaxation:

f∗ ≥ supλ≥0 infx

[
f0(x)−

∑
(α,β)∈N2m

d
λα,β

∏m
j=1 gj(x)αj(1− gj(x))βj

]

Lagrangian relaxation:

f∗ ≥ supλ≥0 infx

f0(x)−
∑

(α,β)∈N2m
d

λα,β

m∏
j=1

gj(x)αj(1− gj(x))βj


︸ ︷︷ ︸

L(x,λ)

Lagrangian relaxation:

f∗ ≥ supλ≥0 infx

f0(x)−
∑

(α,β)∈N2m
d

λα,β

m∏
j=1

gj(x)αj(1− gj(x))βj


︸ ︷︷ ︸

L(x,λ)

But for any λ:

infxL(x, λ) ≥ inf{ t : L(x, λ)− t is SOS }
SOS: sum-of-squares polynomials

• Can restrict to polynomials of bounded degree

• Resulting formulation can be solved using SDP

• SDPs can leverage structured sparsity (e.g. low treewidth)

RLT-POS (Dalkiran-Sherali, Sherali et al)

Min φ0(x)

s.t.

φr(x) ≥ βr, r = 1, . . . , R

Ax = b

0 ≤ lj ≤ xj ≤ uj <∞, ∀j

where
φr(x)

.
=
∑
t∈Tr

αrt

[∏
j∈Jrt

xj

]
, r = 0, . . . , R.

RLT-POS (Dalkiran-Sherali, Sherali et al)

Min φ0(x)

s.t.

φr(x) ≥ βr, r = 1, . . . , R

Ax = b

0 ≤ lj ≤ xj ≤ uj <∞, ∀j

where
φr(x)

.
=
∑
t∈Tr

αrt

[∏
j∈Jrt

xj

]
, r = 0, . . . , R.

REFORMULATION-LINEARIZATION

The RLT procedure (Sherali-Adams) linearizes the formulation by replacing each monomial with a
new variable (underlying mathematical foundation related to moment relaxation)

RLT: Min [φ0(x)]L

s.t.

[φr(x)]L ≥ βr, r = 1, . . . , R

Ax = b∏
j∈J1

(xj − lj)
∏
j∈J2

(uj − xj)


L

≥ 0, ∀ appropriate J1, J2

0 ≤ lj ≤ xj ≤ uj <∞, ∀j

Here, the “L” operator

substitutes each monomial
∏
j∈J xj with a new variable XJ

Pros for RLT-POS:

1. It’s an LP!

2. Convergence theory related to similar method for 0, 1-integer program-
ming.

Cons against RLT-POS:

1. It’s a BIG LP! If we want to be guaranteed exactness.

Other technical details:

• Linearize monomials
∏

j∈J xj in a restricted fashion in order to keep LP
small (e.g. use nonbasic variables from LP)

• Use SDP cuts

• Use branching (careful enumeration)

Approximate reformulation as 0,1 IP (Bienstock and Muñoz)

Bounded variable QCQP:

min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

0 ≤ xj ≤ 1, ∀j.

Approximate reformulation as 0,1 IP (Bienstock and Muñoz)

Bounded variable QCQP:

min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

0 ≤ xj ≤ 1, ∀j.

Main technique: approximate representation using binary variables:

xj ≈
∑L

k=1 2−kyk, each yk = 0 or1

• Error ≤ 2−L.

• Apply parsimoniously

• If an xj is approximated this way then a bilinear form xjxi can be
represented within error 2−L using McCormick

• Other bilinear forms approximated using standard McCormick for con-
tinuous variables

•Main advantage: can leverage robust, modern linear 0,1 solvers.

Small set of Citations

1. D. Bienstock and G. Muñoz, LP formulations for mixed-integer polynomial optimization problems,
arXiv:1501.00288 (2014).

2. C. Chen, A. Atamtürk and S. Oren, A Spatial Branch-and-Cut Algorithm for Nonconvex QCQP
with Bounded Complex Variables, BCOL Report 15.04, U. of California, Berkeley (2015) (submit-
ted).

3. C. Coffrin, H. Hijazi, and Pascal Van Hentenryck. The QC Relaxation: A Theoretical and Compu-
tational Study on Optimal Power Flow, IEEE Transactions on Power Systems, 99, 1–11, September
2015.

4. E. Dalkiran and H. Sherali, RLT-POS: Reformulation-Linearization Technique-based optimization
software for solving polynomial programming problems, Mathematical Programming Computation,
February 2016.

5. B. Kocuk, S. Dey and A. Sun, Strong SOCP Relaxations for the Optimal Power Flow Problem, to
appear, Operations Research.

6. J.B. Lasserre, K.-C. Toh and S. Yang, A bounded degree SOS hierarchy for polynomial optimization,
arXiv: 1501:06126 (2015).

7. M. Laurent, Sum of squares, moment matrices and optimization over polynomials, IMA, (2010),
1–147.

8. S. Low, Convex Relaxation of Optimal Power Flow, IEEE Trans. Control Network Sys. Part I:
Formulations and Equivalence (March 2014), Part II: Exactness (June 2014)

9. R. Madani, S. Sojoudi and Javad Lavaei, Convex Relaxation for Optimal Power Flow Problem:
Mesh Networks, IEEE Trans. Power Sys., 30, (2015), 199–211.

10. D.K. Molzahn and I.A. Hiskens, Convex Relaxations of Optimal Power Flow Problems: An Illus-
trative Example, to appear, IEEE Trans. Circuits and Systems I: Regular Papers, Special Issue
(2016).

SEMI-INTRO
Repeats a couple of slides

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

CAN SHOW: f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

CAN SHOW f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

CAN SHOW f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

(Cough! Here, y is an infinite-dimensional vector).

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

CAN SHOW f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

(Cough! Here, y is an infinite-dimensional vector). Can we make an easier statement?

Recall:

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π,

Thus, f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

So, f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So, f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more?

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Define v = (xπ) (all monomials).

Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

so

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1, M � 0, Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y (redundant)∑
π

ai,πyπ ≥ 0 1 ≤ i ≤ m

Cough! An infinite-dimensional semidefinite program!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1, M � 0, Mπ,ρ = yπ+ρ, for all tuples π, ρ∑
π

ai,πyπ ≥ 0 1 ≤ i ≤ m

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1, M � 0, Mπ,ρ = yπ+ρ, for all tuples π, ρ∑
π

ai,πyπ ≥ 0 1 ≤ i ≤ m

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

Example: d = 8. So we will consider the monomial x2
1 x

4
2 x3 because 2 + 4 + 1 ≤ 8.

But we will not consider x3x
7
5x8, because 1 + 7 + 1 > 8.

Restricted (level-d) relaxation (Lasserre):

min
∑
π

a0,π yπ

s.t. y0 = 1, M � 0, Mπ,ρ = yπ+ρ, for all tuples π, ρ∑
π

ai,πyπ ≥ 0 1 ≤ i ≤ m

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

A finite-dimensional semidefinite program!! But could be very large!!

For d = 2 we get the standard semidefinite relaxation.

