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Data Integration for Medical Studies

Combine Different Types of Medical Data ...

Clinical.
EHRs. Mutations [snP)
Social.

Behavioral.

Environmental.

Genetics.

Copy Number Variation

Proteomics.

Neuroimaging.

Gene Expression

Metabolomics.

Microbiome. )
... To Better Understand Complex Diseases.
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Multi-Modal Data

Multi-Modal Data

Multiple sources of data (sets of features) measured for the same set of
subjects or observations.
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Multi-Modal Data

Mixed, Multi-Modal Data

Mixed or heterogeneous types of data-modalities measured for the same
set of subjects.
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Multi-Modal Data

Opposite: Meta-Analysis.

e We know how to aggregate multiple sets of subjects (n) to conduct
inference for features (p).

» Example: Aggregating patients from multiple GWAS studies to
determine associations of rare variants.

Our Focus

How do we aggregate multiple (mixed) sets of features (p) to conduct
inference on subjects (n)?

Multi-Modal Statistical Data Integration.
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@ Motivating Case Study: The Cancer Genome Atlas
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The Cancer Genome Atlas (TCGA)

Launch Data Portal | ContactUs | For the Media

THE CANCER GENOME ATLAS

N I H National Cancer Institute | searcn /

National Human Genome Research Institute

About Cancer Genomics Cancers Selected for Study Research Highlights Publications News and Events About TCGA

Program Overview Launch Data Portal »

Expllgreu:\ow The Can(cer ﬁs"?rrgz’:"as The Cancer Genome Atlas (TCGA) Data Portal
works, the components o e. . provides a platform for researchers to search,
Research Network and TCGA's place in the download, and analyze data sets generated by
cancer genomics field in the Program TCGA.

Overview.

Learn More » Questions About Cancer

Visit www.cancer.gov

Call 1-800-4-CANCER

Use LiveHelp Online Chat
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The Cancer Genome Atlas (TCGA)

33 different cancer types.
Over 11,000 patients!

e 7 different types of “omics” data (e.g. gene expression, microRNA
expression, mutations, copy number aberrations and variation,
methylation).

2.5 Petabytes worth of data.

Integrated genomic analyses of ovarian
carcinoma

The Cancer Genome At Resarch Network®

Comprehensive molecular portraits of
human breast tumours

The Cancer Genome Ats Neworke

Comprehensive molecular characterization
of human colon and rectal cancer

he

Comprehensive genomic characterization
of squamous cell lung cancers

“The Cancer Genome i Resarch Network*
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TCGA Data-Modalities
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TCGA Data-Modalities

to improve cancer care
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TCGA Data-Modalities

TCGh

Array

PrincipalComponentAnalysis

ElastieNet
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MarkovRandomFields

Non-negahveMameazlor|zahon

TCGA2STAT: Simple TCGA Data Access for Integrated Statistical
Analysis in R.
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TCGA Data-Modalities

Appendix A: Summary of cancer types and omics-profiles.
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TCGA Objectives & Data Integration

@ Cancer is complex & heterogeneous.

@ TCGA targeted cancer types where etiology unknown, prognosis is
poor and/or few therapies exist.

Objectives:
@ Discover sets of mutations and aberrations, gene expression changes,
and epigenetic changes that cause tumor cells to grow and proliferate.
@ Discover cancer subtypes.
» Groups of patients with similar molecular tumor characteristics.
> Similar outcomes & Respond similarly to therapies.
@ Discover new personalized therapies.
» Many genes are more easily targeted by manipulating miRNAs or
methylation levels.

» Example: Ovarian cancer tumors with BRCA1/2 mutations sensitive to
PARP inhibitors.
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TCGA Objectives & Data Integration
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© Motivating Case Study: The ROS & MAP Studies
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Alzheimer's Disease & Dementia

Alzheimer’s Disease:
o 6" leading cause of death in the US.

@ Only top ten cause of death that cannot be prevented, cured, or
slowed.

@ 35.6 million people worldwide are currently living with Alzheimer's
Disease, with an estimated 115 million people by 2050.

@ Characterized by progressive declines in memory & cognition
(dementia).

Other Causes of Dementias:
@ Lewy Bodies.
@ Parkinson’s Disease.

@ Infarcts.
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ROS/MAP Studies

ROS: Religious Orders Study (1994 - present).
o Catholic priests, nuns & brothers.

MAP: Rush Memory and Aging Project (1997 - present).

@ Older adults living in assisted living communities.

Prospective, longitudinal studies of aging & dementia:
@ >2800 subjects enrolled.
o Free of dementia at time of enrollment.

@ Follow-up rate among survivors: > 90%

David Bennett, PI.
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ROS/MAP Studies

Combined ROS and MAP

B Enrolled
W Autopsied

Participants

500 1000 1500 2000 2500 3000 3500

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

0

@ Brains donated at death for autopsy (Anatomical Gift Act).
@ Autopsy rate among deceased: > 90%
@ >1000 brains autopsied to date.
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ROS/MAP Studies

n 1156 1642
Age at BL 75.6 (7.5) 79.9 (7.6)
::c;?a%f[lr:r:li,n - max] 218 419 e Ll
Male sex 355 (31%) 435 (26%)
Education, yrs 18 (3.3) 14.5(3.3)
Clinical dx of AD 377 (22%) 361 (33%)
Self-reported EA 1020 (88%) 1443 (88%)
Dead 635 (55%) 649 (40%)
Age at death 87.2 (7.0) 88.8 (6.2)
Pathologic dx of AD 355 (62%) 306 (62%)

G. I. Allen (Rice & BCM) Statistical Data Integration June 8, 2016 10 / 36



ROS/MAP Data-Modalities Collected

Baseline: GWAS

taprt
i

Annual: Independent Clinical

Evaluation & Cognitive Testing

Post-Mortem:
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| |

Baseline: Demographics,
Behavioral, Environmental,
Social, and Lifestyle Factors
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Post-Mortem: Neuroimaging

Biannual: Structural
Neuroimaging (2009-present)

Statistical Data Integration
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ROS/MAP Data-Modalities Collected

Genetics Data.
o Genotyping.

» Single Nucleotide Polymorphisms
(n = 2295).
» Whole Exome Sequencing (n = 783).

Genotyping (GWAS, SNPs)

Gene Expression (RNA-Seq)

o Gene Expression.
» Next generation RNASequencing
(n=636).
o Epigenetics.

» MicroRNA Expression (n = 702). e
» Histone acetylation (n = 714).

» DNA Methylation (n = 748). e i

DA s

e Proteomics & Metabolomics. (In
Progress)
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ROS/MAP Data-Modalities Collected
Neuroimaging Data (Ante & Post-Mortem).

e Multi-Parametric Structural MRI (FLAIR, T1-Weighted, Quantitative
T2, SWI); 1601 scans on n = 854 patients.

e Diffusion Tensor Imaging (DTI).
e Functional MRI (fMRI; resting-state).

Fluid-attenuated
Inversion T1-weighted
Recovery (FLAIR)

Proton Density

(PD) T2-weighted
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ROS/MAP Data-Modalities Collected

Other Data.
e Demographics (age, education, gender, race, etc.)

@ Clinical Diagnosis & Medical Conditions.

@ Cognitive Testing.
» 19 different tests! (Episodic memory, working memory, semantic
memory, perceptual orientation, perceptual speed).

Neuro-Pathology.

» Immunohistology of Beta-Amyloid & Tau-Tangle Density for 8 brain
regions, Lewy Bodies, Infarcts, TDP-43, etc.

Life Style & Personality (physical activities, social interactions,
cognitive activities, purpose in life, etc.)

@ Motor & Gait Measures.
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ROS/MAP Data-Modalities Collected

Global Cognitive Function

Year
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ROS/MAP Data-Modalit

_ Cognition (cogn_global)
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= Aizheimer's Disease

— Cognitive Reserve

— Cognitive Vulnerable

— Mild Cognition Impairment
— Normal

2Qa¢



ROS/MAP Objectives & Data Integration

Alzheimer's Disease (Late Onset):

o Etiology unknown.
@ Few known risk factors.
» APOE e4 (10-15% in population) associated with higher risk of AD,

but 75% with APOE e4 don't develop AD and only 50% of AD
patients have APOE e4.

» Small associations with educational attainment, social interactions,
cognitive activities, and lifestyle.
@ Pathologically characterized by Amyloid 5 plagues and 7-tangles.

» Causative or a by-product of another disease-causing process?
» Cognitive Reserve: ~ 44% of patients exhibit AD-like neuro-pathology
but show no signs of cognitive decline.

G. I. Allen (Rice & BCM) Statistical Data Integration June 8, 2016 12 / 36



ROS/MAP Objectives & Data Integration

@ Alzheimer's Disease is very complex.

@ Individual Data-Modalities (e.g. just genetics, just cognition, lifestyle,
just neuroimaging, just neuropatholgy) have been extensively studied
... with few successes.

o Data Integration of all possible Data-Modalities to gain a more
complete picture into the etiology & possible therapies for AD!
» Examples: Find a genetic basis for amyloid plagues and for when these
cause cognitive decline.
» Find an earlier neuroimaging marker for plagues that are likely to cause
cognitive decline.
» Find epigenetic markers that are possible drug targets modifying the
expansion of amyloid plagues.
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© Challenges & Open Problems
@ Data Challenges

o Statistical Challenges
@ Multivariate Modeling Challenges: Integrative Networks
@ Integrative Data Mining Challenges
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Data Challenge: Batch Effects

Problem:
e Data acquired in groups or in different labs / clinics.
@ Over time, technology can change.

@ Results in differences in way data is produced and processed.
Batch Effects!

Major Challenges:
@ Batch Effects can be confounded over time.
@ Batch Effects can be confounded across Data-Modalities.

@ Technologies change or are replaced over time.
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Batch Effects in ROS/MAP
DNA Methylation Data.

©
[
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@ Thermocycler replaced.
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Batch Effects in ROS/MAP

RNA-Sequencing Gene Expression Data
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Batch Effects in ROS/MAP

Structural Neuroimaging Data.
Fluid-attenuated

Inversion T1-weighted
Recovery (FLAIR) (PD)

@ 1.5 Tesla magnet used before 2012, 3 Tesla after.

Proton Density

T2-weighted

15T

3T
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Data Challenge: Missing / Unaligned Data-Modalities

X (K)

X (1) X (3)

Patients

X (K)
X (2)

@ Not all Data-Modalities measured for all subjects.
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Data Challenge: Missing / Unaligned Data-Modalities

X (K)

X (1) X (3)

Patients

X (K)
X (2)

@ Limited sample size if use complete cases.
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GWAS

Missing Data Chunks: ROS/MAP Data

Ante-Mortem MRI
n=

Post-Mortem MRI
n=
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Missing Data Chunks: ROS/MAP Data
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Missing Data Chunks: TCGA Ovarian Cancer

Somatic Mutation

(IlluminaHiSeq)

n=
mRNA Expression

(RNASeq - RPKM)
n =296

Methylation
(IMlumina27K)

n =592

miRNA Expression
(miRNASeq - counts)
n =453

G. I. Allen (Rice & BCM)

Statistical Data Integration

DA



© Motivating Case Study: The Cancer Genome Atlas
© Motivating Case Study: The ROS & MAP Studies

© Challenges & Open Problems
@ Data Challenges

o Statistical Challenges
@ Multivariate Modeling Challenges: Integrative Networks
@ Integrative Data Mining Challenges

@ The Big(ger) Picture
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Prediction vs. Data-Driven Discoveries

Prediction is (relatively) Easy ...

@ Black-Box methods that can handle mixed data.
» Example: Random Forests, RBMs, Deep Learning.

@ Ensemble Learning.
» Fit different model to each Data-Modality & Ensemble them together.

o Feature Learning on each Data-Modality.

> Feature learning (e.g. PCA, PLS, RBM, etc.) on each Data-Modality.
» Fit supervised model to learned features from all Data-Modalities.
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Prediction vs. Data-Driven Discoveries

Prediction is (relatively) Easy ...

@ Black-Box methods that can handle mixed data.
» Example: Random Forests, RBMs, Deep Learning.

@ Ensemble Learning.
» Fit different model to each Data-Modality & Ensemble them together.

o Feature Learning on each Data-Modality.

> Feature learning (e.g. PCA, PLS, RBM, etc.) on each Data-Modality.
» Fit supervised model to learned features from all Data-Modalities.

... Discoveries from Mixed, Multi-Modal Data are Hard.

Data-Driven Discoveries
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Integrative Genetic Networks
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Networks for Different Data Types

Existing (Markov) Network Types:
@ Gaussian Graphical Models (Continuous-Valued).

Glioblastoma gene expression network (microarray).

@ Ising Models (Binary-Valued).
© Gaussian-Ising Models.
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Networks for Different Data Types

Existing (Markov) Network Types:

@ Gaussian Graphical Models (Continuous-Valued).
@ Ising Models (Binary-Valued).
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Modules from lung cancer somatic mutation

network.
© Gaussian-Ising Models.
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Networks for Different Data Types

Existing (Markov) Network Types:
© Gaussian Graphical Models (Continuous-Valued).
@ Ising Models (Binary-Valued).
© Gaussian-Ising Models.
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Networks for Different Data Types

Existing (Markov) Network Types:
@ Gaussian Graphical Models (Continuous-Valued).
@ Ising Models (Binary-Valued).
© Gaussian-Ising Models.

What about count-valued data? Others?

RNA-sequencing data? Methylation data?

G. I. Allen (Rice & BCM) Statistical Data Integration
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Graphical Models via Exponential Families

o Key Assumption: Conditional distributions are Exponential Families.
» Ex: Gaussian, Bernoulli, Poisson, Exponential, Negative Binomial, etc.

Review: Exponential Family Distributions.

P(X) =exp (0 B(X)+ C(X)—D(0))

@ 0 is the canonical parameter.
e B(X) is the sufficient statistic.
e ((X) is the base measure.

e D(0) is the log-partition function.
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Graphical Models via Exponential Families

Theorem
Joint Density necessarily has the form:

P(X) = exp{ D 0BX)+ Y > 0 B(X:)B(X:)

scV teN(s)

k
+30 N bay B(XS) 11 B(X;)+ > C(X:) - A(e))}

seV ty,... .ty eN(s)

@ Network inference via penalized conditional maximum likelihood
estimation (neighborhood selection).

@ Penalized (and possibly constrained) GLMs!

@ Strong theoretical guarantees for parameter estimation and network
recovery.
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Graphical Models via Exponential Families
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Graphical Models via Exponential Families

Lung Cancer Gene Expression Network (RNA-Seq)
Inferred via Poisson Graphical Model.
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Integrated Network Models

Mutations (SNP) ! Ry Methylation
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Integrated Network Models

Mixed Chain Graphical Models via Exponential Families.

o Key Assumptions:
» Conditional distributions are (different) Exponential Families.
» Variables belong to known groups and the directionality of
dependencies between groups is known.

@ Theorem: Joint integrated distribution exists and has a closed form!

» Dependencies parameterized by products of sufficient statistics from

different distributions.
» Strong statistical guarantees for network inference (penalized MLEs).

» Permits wide-range of dependence structures.
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Integrated Network Models

Mixed Chain Graphical Models via Exponential Families.

|
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Integrated Network Models

Mixed Chain Graphical Models via Exponential Families.
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Applications & Implications

Implication

First multivariate distribution that can directly
parameterize dependencies for mixed data types.
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Applications & Implications

Glioblastoma Integrated Network.
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Applications & Implications

Breast Cancer Integrated
Mutation-Gene Expression
Network.

Blue nodes: Genes
(RNA-Sequencing - counts)
Yellow nodes: Mutations &
Aberrations (aggregated at
the gene level - binary)

Inferred via Poisson-Ising .
Graphical Model. 4
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Challenge: Feature Selection from Mixed Data

Problem

Inferring Integrative Graphical Models via Exponential Families requires
performing feature selection for GLMs from Mixed Multi-Modal Data.
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Challenge: Feature Selection from Mixed Data

X (1)

Patients

Feature Selection Challenges:
@ Data-Modalities on Different Scales.
> Requires different regularization levels.
» Standardizing binary, count-valued, skewed variable etc. can make
things worse!
@ Signal Interference across Data-Modalities.

» Correlation within and between Data-Modalities can obscure weaker
signals from other Data-Modalities.
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© Motivating Case Study: The Cancer Genome Atlas
© Motivating Case Study: The ROS & MAP Studies

© Challenges & Open Problems
@ Data Challenges

o Statistical Challenges
@ Multivariate Modeling Challenges: Integrative Networks
@ Integrative Data Mining Challenges

@ The Big(ger) Picture
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Integrative Dimension Reduction / Pattern Recognition
Existing Approaches:

Individual (genes)

Individual (miRNA)

miRNAs —

Joint & Individual Variation Explained (JIVE; Lock et al., 2013).
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Integrative Dimension Reduction / Pattern Recognition

Existing Approaches:
@ Modern Canonical Correlations Analysis (same types of data).

@ Coupled PCA / Coupled Matrix Decompositions (same types of data).
e PCA for Exponential Families (single data sets).

Open Statistical Problem: Dimension Reduction / Pattern Recognition
for Mixed Multi-Modal Data.

Major Challenges:

@ Scaling, regularization, signal interference across mixed
data-modalities.

@ Missing / unaligned data chunks.
@ Reproducible discoveries & inference in high-dimensions.
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Integrative Clustering

Existing Approaches:

... .
S e :o .
iCluster e Clustering in
g S L Latent subspace
£ ® ®.® | = Unified data scale
5§ ° . *' = Unified data dimension
k] .0° = Allows complex data type

dependence structure
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Latent factor 1

Integrative Clustering (iCluster; Shen et al., 2009).
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Integrative Clustering

Existing Approaches:

@ Integrative Clustering (via latent variables and coupled matrix
factorizations; same type of data).

e Exponential Family Clustering (single data set).

Open Statistical Problem: Clustering for Mixed Multi-Modal Data.

Major Challenges:

@ Scaling, regularization, signal interference across mixed
data-modalities.

@ Reproducible discoveries & inference in high-dimensions.

@ Missing / unaligned data chunks.
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Longitudinal Modeling & Imaging-Genetics

Baseline: GWAS

Annual: Independent Clinical

Evaluation & Cognitive Testing

Post-Mortem:

Transcriptomics &

Epigenetics \I
| |

Baseline: Demographics,
Behavioral, Environmental,
Social, and Lifestyle Factors

i3
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Post-Mortem: Neuroimaging

Biannual: Structural
Neuroimaging (2009-present)

Statistical Data Integration

Post-Mortem:
Comprehensive
Neuropathology
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Longitudinal Modeling & Imaging-Genetics

Existing Approaches:

@ Multi-modal neuroimaging (e.g. multi-parametric structural MRI,
MRI-DTI, fMRI-EEG, fMRI-DTI).

e Imaging-genetics (mostly GWAS; mostly univariate).
@ Sparse, uneven longitudinal mixed effects models.

@ Variable selection for longitudinal mixed effects models.

Open Statistical Problems:
@ Integrate: Integrative Genetics 4 Integrative Neuroimaging.
e Data Integration for Longitudinal Data.
e Modern / High-Dimensional Longitudinal Mixed Effects Models.
@ Missing and Longitudinally Unaligned Data-Modalities.
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Integration of Multiple Studies & Data Modalities

AMP-AD: Accelerating Medicine Partnership - Alzheimer's Disease

Accelerating Alzheimer's Research cures

_Accelerating:

and Drug Development

AMP-AD is an initiative of the Accelerating Medicines Partnership

(AMP), a bold new venture among the NIH, 10 biopharmaceutical

companies, and several nonprofit organizations aiming to A

transform the current model for developing new diagnostics and

treatments for chronic diseases. S I ’
Arthritis

) Diabe

Publicy = 3

e $92.5 M partnerships between government (NIH-NIA) & industry.
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Integration

AMP-AD Data Available:

of Multiple Studies & Data Modalities

+ Disease

*  Alzheimers
Disease

. Progressive
Supranuclear
Palsy

*  Tauopathy,
Pathological
Aging

*  Parkinsons
Disease

*  Mild Cognitive
Impairment

*  Amyotrophic
Lateral Sclerosis

*  Corticobasal
Degeneration

*  Autosomal
Dominant
Parkinsons
Disease

*  Frontotemporal
Dementia

Tissue type
Temporal Cortex
Frontal Pole
Occipital Visual
Cortex N
Inferior Temporal
Gyrus

Middle Temporal .
Gyrus

Superior
Temporal Gyrus
Posterior
Cingulate Cortex

I. Allen (Rice & BCM)

Datatype

RNA-seq

Array Genotype
Imputed Genotype
Clinical

miRNA nanostring
H3K9Ac ChIP-Seq

DNA Methylation

Mass Spectrometry
Gene Expression
Array Genotype

Array Expression
Genotype

eSNP Results
Nanostring Expression
Exome sequencing
Coexpression Networks
TLR Genotype
Confocal imaging REST

Study

ROSMAP

Emory

ACT

BLSA

HBTRC

MSBB
TAUAPPms
MayoEGWAS
MayoLOADGWAS
MayoPilot
MayoRNAseq
MayoBB
MayoLOADGWAS
IL10

BroadiPSC
Upenn
TAUmicroglial
MSMM

MSDM

*+ Center
*  Broad-Rush
. Emory

*  Mount Sinai

. UFL-Mayo-ISB

*  Myers-NIAGADS
*  Harvard-MIT

National Institute on Aging

Turning Discovery Into Health

Statistical Data Integration
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Ongoing Challenges

@ Data Access, Data Quality & Data Privacy.
© Reproducible Research.

© Reproducible Data-Driven Discoveries & Inference.

RADC Research Resource Sharing Hub
®

Our data—

Your vision

The Rush Alzheimer's Disease Center (RADC), one of 29 Alzheimer's disease (AD) Research Centers across the country designated and
funded by the National Institute on Aging (NIA), is dedicated to supporting research about the cause, treatment, and prevention of AD, other
dementias, and a range of other common chronic conditions of aging. The many RADC studies generate an enormous variety of unique data
and biospecimens to support this effort. RADC faculty and staff are committed to sharing these resources with the wider aging and AD research
community to accelerate the pace at which new knowledge is created for the treatment and prevention of dementia and other age-related
chronic neurologic conditions.

The RADC Research Resource Sharing Hub was specifically designed to help you, the non-RADC investigator, navigate the complex data
and biospecimens available for sharing, and to assist you in identifying data and biospecimens that you can use to support your own projects.
We invite you to explore the site, see what is available, and submit your data and/or biospecimen request.

—David A. Bennett, MD, Director of RADC
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Ongoing Challenges

© Data Access, Data Quality & Data Privacy.
© Reproducible Research.

© Reproducible Data-Driven Discoveries & Inference.

by f
s Post-Mortem:
: _ Annual: linical

/’ " Bvaluation &CognitiveTesting  goicanatics -
/ AN
[ / ! ! ! ! ! L

T T T T T T

' ]\\ _ //]
\ S -~/
\ L Post-Mortem: Neuroimaging /

! Biannual I: Structural /

Baseline: Demographics, Neurmmagmglzous present)
Behavioral, Environmental,
Social, and Lifestyle Factors

Post-Mortem: /
Comprehensive
Neuropathology

o Different data-modalities go through different processing and quality
control procedures, often performed by different people using different

software, and etc.
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Ongoing Challenges

© Data Access, Data Quality & Data Privacy.
© Reproducible Research.

© Reproducible Data-Driven Discoveries & Inference.

@ Multi-Step Analysis Pipeline: Large-Scale Multi-Modal Data goes
through different (stochastic) processing, feature extraction, and
feature learning pipelines.

@ Inference typically conducted on the last step.

@ For inference to be valid, must account for the stochastic nature of
the entire analysis pipeline, not just the last step.

@ Challenge: Most processing, feature extraction, feature learning, and
machine learning produce estimators whose distributions are unknown

(PSI).
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Summary

Summary

@ Analysis of individual Data-Modalities has yielded limited progress for
several complex diseases.

o Data Integration is needed across Data-Modalities to better
understand disease etiology, prognosis, and discover new therapies.

@ Statistical Challenges:

Data-Driven Discoveries with mixed data, unaligned data, &

longitudinally unaligned data.

Inference with mixed, multi-modal data & multi-step pipeline analyses.
v
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Summary

Summary

@ Analysis of individual Data-Modalities has yielded limited progress for
several complex diseases.

o Data Integration is needed across Data-Modalities to better
understand disease etiology, prognosis, and discover new therapies.

@ Statistical Challenges:
Data-Driven Discoveries with mixed data, unaligned data, &
longitudinally unaligned data.
Inference with mixed, multi-modal data & multi-step pipeline analyses. |

What does it take?
Q A Team!
@ A willingness to get dirty!

© Long term objectives, planning, and resources.
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