

General Atomics Electromagnetic Systems Group

Title: The use of Cryofracture for Munitions Demilitarization

Presented to: The Committee on Alternatives for the Demilitarization of Conventional Munitions

Presented by: John Follin, Director, Strategic Development for Demil and iSCWO Systems

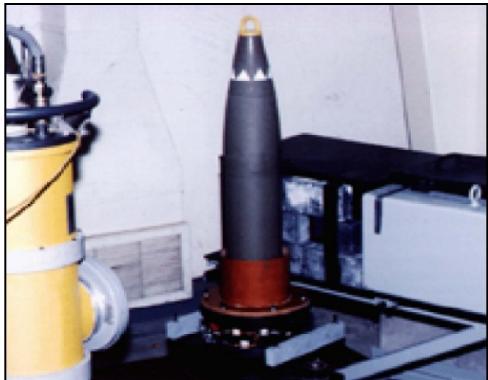
10 December 2017

General Atomics

LOCATION: San Diego, California

FOUNDED: 1955

STATUS: Privately held corporation


OWNERS: Neal and Linden Blue

GA is a recognized world leader in high-technology research, design, manufacturing, and production for industry and government in the U.S. and overseas

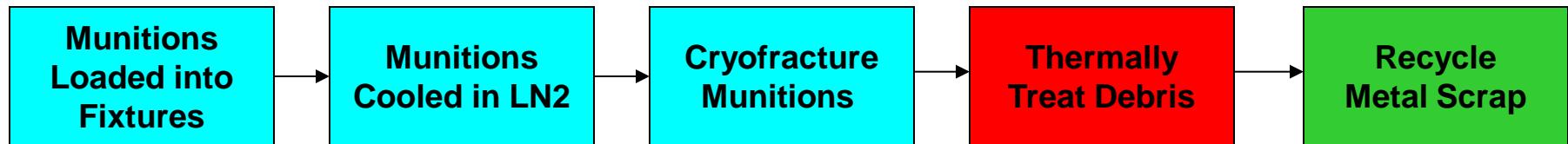
General Atomics Demilitarization Experience since 1982

Munitions
Inspection Systems

Cryofracture

SCWO of Energetics
and Industrial Wastes

Energetics Incineration


Chemical Weapons Demil

Hydrolyzed Energetics

We apply this Experience for all Demil Projects for Success

Standard Munition Cryofracture Process

DESTROYS MUNITIONS EFFICIENTLY AND THOROUGHLY

Cryofracture Attractive Characteristics

- Cools munitions in liquid nitrogen prior to fracture/energetic accessing in a hydraulic press
- All munition handling performed by remotely controlled robots or automated conveyors (manual item feed)
- Minimum contaminated area (contained within the equipment)
- Simple system processes a wide variety of munitions
- Completely destroys the munition
- Flexible process is not sensitive to design configuration or condition (range from new to poor condition)
- High throughput/competitive cost
- Interfaces with an approved thermal treatment systems (APE-1236 or APE-2210), supercritical water oxidation, or energetic recovery systems

Good Reasons to Use Cryofracture

- Many munitions are excellent candidates for cryofracture
 - Munition items that are difficult or costly to disassemble (easy to disassemble items need not apply)
 - Munition items that do not have an established or demonstrated demilitarization technology (e.g., not a direct feed into an APE-1236 kiln)
 - Items that will cause damage if they detonate during thermal treatment
 - Deactivated munition bodies to be recycled that require full breakup
 - Cryofracture is at its best when accessing munitions without any detonator train near the stress points exerted by the cryofracture tooling (e.g., large munitions, hand grenades, BLUs, ICMs, Rockets, etc.)
 - The cryofracture process is very cost effective if there are a variety of different munition items for demilitarization because the process utilizes the same equipment but uses different tooling and fixtures

Summary – Cryofracture Item Data Base

- Large Items
 - 8 inch, 155mm, and 105mm Projectiles
 - M23 landmines, M55 Rockets (115mm), and 4.2 in. mortars
- Small Items
 - ADAM mines (QA and AP) and M16 mines
 - Rockeye II (MK 118) Bomblets
 - BLUs (BLU 63/B, BLU 86/B, BLU 61 A/B, BLU 91/B, BLU 92/B, and BLU 97/B)
 - M42/M46/M77/M80 ICM bomblets
 - 40mm Cartridge Rounds (M406 and M433)
 - Destructors (M10, M4, MK24)
 - Fuze (M379)
 - Bursters
 - Hand Grenades (M26, M61, and M59)
 - Landmines (M16 and M56 AT/AV)
- A large number of items were cryofractured in support of tests

Summary – Cryofracture Tests

- General Atomics – inert munitions with real configuration
- Dugway Proving Ground – real munitions (large, medium and small) with thermal treatment system
- Yuma Proving Ground – a variety of medium and small sized munitions with thermal treatment system
- Tooele Army Depot – Medium and small sized munitions with thermal treatment system

Cryofracture Ensures Accessing of Energetics

4.2 IN. MORTARS

155 mm PROJECTILES

BOXED 4.2 IN. MORTARS

105 mm PROJECTILES

DRUMMED MINES

ROCKETS

CRYOFRACTURE DESTROYS MUNITION BODIES

Some Examples of Medium to Small Sized Item Cryofracture

BLU 92/B
(CBU 89 A/B)

BLU 97/B
(CBU 87 A/B)

BLU 61A/B
(CBU 52B/B)

ADAM
Land Mines

Rockeye II
Bomblets

M406 and M433
40mm HEDP

M26 Hand
Grenade

ICM Shape
Charges

Conventional Demil

McAlester Army Ammunition Plant (MCAAP)

- GA cryofracture system with APE-1236 RKS/PAS for the destruction of ADAM AP Land Mines
- PAS upgrades – plant startup in March 2018
- System can be modified for other munitions

Yuma Proving Ground (YPG)

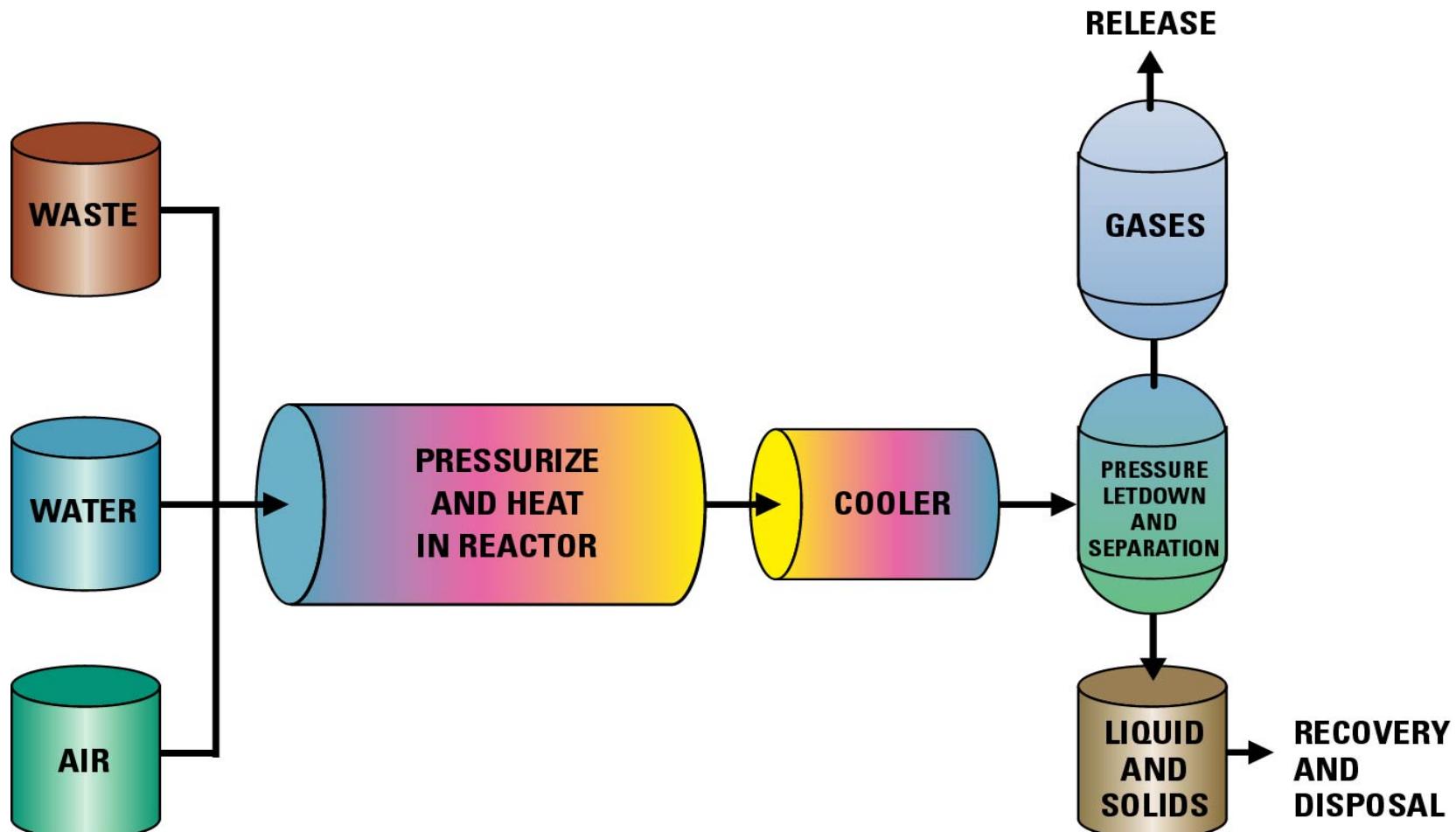
- GA cryofracture system at YPG for destruction of ICM range scrap

Crane Army Ammunition Activity (CAAA)

- GA transportable cryofracture system delivered to CAAA
- Planning underway to install/startup/test system to destroy Rockeye Bomblets

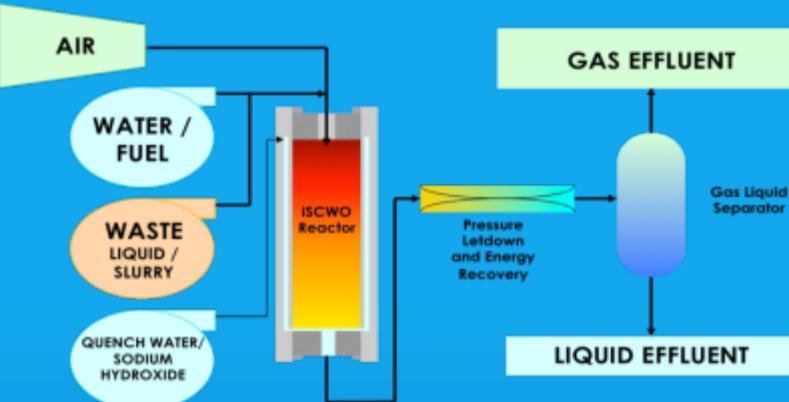
Detonations inside the Cryofracture Press

- Detonations are not likely due to controlled orientation of the munition item (and detonator) prior to cryofracture
- Detonations are possible and the press and frame are designed to survive detonation forces (20 ms impulse loading)
- Fragment shields and tooling are designed to survive but can easily be replaced
- Press system designed to withstand multiple detonations
- Blast Isolation Valves protect downstream equipment
- Fragment/blast analysis has been performed to verify more-than-adequate design to withstand multiple detonations
- Test coupons are used inside the press to evaluate conditions after a detonation


Press Cleaning

- Press tooling is kept clean from debris by use of a tilt table to discharge the cryofracture debris and a air-blast system to clean surfaces while the press slide is in the close position
- Debris build-up is not a problem based on past cryofracture tests and operations
- If maintenance is required inside the press (e.g., tooling), procedures are in place that specify the use of a low-force sand blaster to scour the tooling. The resultant sand is discharged to the shuttle boxes where it can be thermally treated by a thermal treatment system
- Standard procedures are then followed for maintenance of equipment
- Other components such as conveyors and robots do not come into contact with exposed munitions – equipment manufacturer repair procedures are used

Cryofracture Interfaces


- The cryofracture process is a pre-treatment process to access energetics and destroy the munition body – does not destroy the energetics
- Thermal treatment of the energetics can be handled by an approved and permitted APE-1236 RKS/PAS incinerator
- Energetics recovery is possible by washing the cryofracture debris and then going thru additional steps to recover energetics
- If destruction of energetics is required but incineration is not supported or desired, the cryofracture debris and energetics can be washed and subsequently destroyed by using a supercritical water oxidation process

Process Flow of a GA iSCWO System

System operates at 650C and 3500PSI for excellent destruction of organics

iSCWO: Technical and Cost Advantages

- Perfect for onsite waste destruction
- Cost competitive with incineration or any other oxidation process at the site
- No airborne particulates
- No afterburner or complex secondary processing equipment
- Clean water by-product required little or no post-treatment prior to discharge to POTW
- No flame or burners used for process
- Simple design – easily maintainable
- Waste stream testing in San Diego

Rapid, complete organic destruction with no pollution abatement system

Cryo fracture – Commonly Asked Questions

- **Is there data to backup cryofracture of various munitions?**
 - There is real test data that supports the use of cryofracture for the destruction of a variety of munitions (or similar types)
 - This data not only supports the use of cryofracture to access the munitions but also the successful thermal treatment of the cryofractured debris
 - For any unique munitions, GA can perform analysis to determine how to fracture the munition to access the energetics
- **Is it safe?**
 - The process is an automated, remote operation behind blast walls
 - Press has slides that give 3" of protection prior to fracture
 - Detonations are possible - system can withstand a detonation up to 5 lbs NEW – both within the press and thru the blast isolation discharge valves
 - Full HAZOP analysis has been performed on each process step

Cryofracture – Commonly Asked Questions

- **Can you process other munitions through the system?**
 - Within a certain size, you can change fixtures to handle different munitions (L x W)
 - Press tooling can be changed inside the press to handle different munition configurations – however, some configurations might use similar type tooling
 - Feeding method to the rotary kiln can be modified (shuttle boxes)
- **How does the use of liquid nitrogen assist with the process?**
 - Liquid nitrogen does NOT change any chemical properties (e.g., explosives or propellants)
 - Liquid nitrogen does allow for ferrous metal to reach its nil-ductility temperatures so that it fractures
 - Generally for most munition items the soak time ranges from 10 mins to 45 mins
 - Other non-ferrous metals can be used – but requires specialized tooling

Summary

- Simple remote, automatic process that completely destroys the munition body and prepares the debris for thermal treatment
- Process can process a wide variety of munitions
- Minimum contaminated area (contained within the equipment)
- Flexible process is not sensitive to design configuration or condition (range from new to poor condition)
- Successful testing has been performed on many types of munitions
- Thermal treatment can use an incinerator (APE-1236 or APE-2210 RKS/PAS), supercritical water oxidation, or energetic recovery systems

Contact Information

Thank you very much for your time!

John Follin
Director, Strategic Development
Demilitarization and Chemical Waste Destruction
General Atomics Electromagnetic Systems Group
1 858 964 6805 (office)
John.Follin@googlemail.com