NASA Armstrong Mission

Advancing Technology and Science Through Flight

1. Perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology

2. Validate space exploration concepts

3. Conduct airborne remote sensing and science observations

X-57
Traveler
SOFIA
NASA Armstrong Vision
To Separate the Real from the Imagined Through Flight

- Space Shuttle ALT
- Lunar Landing Research Vehicle
- M2-F1
- F-8 Digital Fly-By-Wire
- Helios
- X-29 Forward Swept Wing
- X-43
- X-15
- X-15 Helios
NASA Armstrong Vision

To Separate the Real from the Imagined Through Flight

X-56A

Low-Boom Flight Demonstrator

Prandtl

SOFIA

Towed Glider Air-Launch System

X-57

Dream Chaser
What Does Armstrong Really Do?

- Armstrong has facilities and requisite expertise to conceive, design, analyze, fabricate, integrate, maintain, and conduct disciplinary research, flight research, and flight test on modified or unique research vehicles and systems.

- Armstrong’s strength is in integration of developmental systems – integration of systems into a vehicle (fundamental aero type work) or of vehicles into a system (unmanned aircraft system [UAS] in the National Airspace System [NAS]).
 - Combination of engineering, operations, and safety skills inherent in workforce and flexible/lean processes to manage risk down to the right (acceptable) level.

- While majority of work is aircraft-based, skills applied to non-aircraft work (vehicle integrated propulsion research, ground test, Orion Pad Abort [PA]-1 integration, X-43, lifting bodies, Lunar Landing Research Vehicle, etc.).

- Technical staff is experienced with various aircraft types, flight regimes, systems – not restricted to a certain class of aircraft.
 - Same people to work subsonic, supersonic, hypersonic systems.
NASA Armstrong Flight Research Center

Edwards AFB, California

- Year-round flying weather
- 301,000 acres remote area
- Varied topography
- 350 testable days per year
- Extensive range airspace
- 29,000 feet of concrete runways
- 68 miles of lakebed runways
- Supersonic corridor
- U.S. Air Force Alliance
NASA Armstrong Science Operations Building 703

Palmdale, California

Home to

- Stratospheric Observatory for Infrared Astronomy (SOFIA) – Astrophysics
 - Boeing 747

- Earth Science – Airborne Science
 - DC-8
 - ER-2
 - C-20A
Low-Boom Flight Demonstrator (LBFD)

Collecting data that could make supersonic flight over land possible, dramatically reducing travel time in the United States
LBFD Program Schedule

Formulation and Planning Concept Feasibility Studies

<table>
<thead>
<tr>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRDR</td>
<td>ASRR</td>
<td>PDR</td>
<td>Post-PDR Option</td>
<td>Exploratory Comm. Test</td>
<td>Val. Field Study Meth.</td>
<td>Community Noise Validation</td>
<td>Initial Community Response Data Set</td>
<td></td>
</tr>
</tbody>
</table>

Commercial Supersonic Technology (CST) Project
- QueSST Concept Development and Preliminary Design
- QueSST Planning and Formulation
- CST Community Response Research

Low Boom Flight Demonstration (LBFD) Project
- LBFD Aircraft Design, Build and Validate

<table>
<thead>
<tr>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDP-A/B</td>
<td>RFP Release</td>
<td>DPDR</td>
<td>CDR</td>
<td>First Flt</td>
<td>SAR</td>
<td>Boom Signature Validation</td>
<td>Initial Community Response Testing</td>
<td></td>
</tr>
</tbody>
</table>

Sonic Boom Noise Standard (FAA - ICAO)
- CAEP 10 Metric Selection
- CAEP 11 Metric Validation
- CAEP 12 Prelim Sonic Boom Standard

Legend:
- **CST Milestones**
- **LBFD Milestones**
- **NASA Input to CAEP**
Basic Program Overview: MAD – MUTT – X-56A

- AFRL teamed with NASA and Lockheed: Multi-Utility Aeroelastic Demonstration (MAD)
 - Develop a Multi-Utility Technology Test-bed (MUTT) unmanned aircraft
 - Active aeroelastic control and gust load alleviation (GLA) research
 - Develop multiple flutter mode control system for an unstable vehicle

- Two Lockheed X-56A aircraft were made
 - Fido (tail number [TN] 01, flown by Lockheed) – 8 flights (stiff wing); crashed/destroyed November 2015
 - Buckeye (TN 02, flown by NASA) – 8 flights (stiff wing) + 6 flights (flex wing)

- TN 02 Buckeye – NASA-owned; NASA-grown flight control system
 - 2018: Currently in flexible wing flight phase, leading up to flutter research
 - Flex wing first flight (August 2017)
 - Ongoing: Fly 1-2 times per week through end of April 2018
 - Next flight (No. 15): Collect data to determine flutter suppression control law margins at 80 knots
 - Challenges: Sensitive to winds, turbulence, GPS jamming, lakebed conditions

Armstrong Flight Research Center
28-foot span, 480-pound GTOW, 150 knots, 10,000 feet altitude, emergency recovery chute.
X-57 Maxwell

Improving commercial aircraft energy and environmental impacts
Autonomous Systems

Advance autonomous technologies to improve safety and efficiency of future vehicles
Airborne Science Program focuses on

- Weather
- Climate change and variability
- Earth surface and interior
- Water and energy cycle
- Carbon cycle and ecosystems
- Atmospheric composition

Armstrong’s role is

- Obtain high-resolution measurements
- Support new space-based sensor development
- Satellite calibration and validation
- Develop next-generation Earth scientists and engineers
Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

Joint venture with Jet Propulsion Laboratory using an airborne radar to study Earth science with emergency response potential

UAVSAR images of San Andreas fault

NASA's Gulfstream III with UAVSAR pod
Satellite Instrument Development and Global Earth Science Studies

Developing tools to enhance predictions of weather and climate

Operation IceBridge (OIB)

Six-year field campaign, the largest airborne survey of Earth’s polar ice

Sea ice is seen from NASA's DC-8 flying science laboratory during a low-level flyover of the Weddell Sea off Antarctica.
Infrared Astronomy in the Stratosphere
Making discoveries about our solar system and the universe

Stratospheric Observatory for Infrared Astronomy (SOFIA)
World’s largest flying observatory features a 106-inch primary mirror and a telescope that weighs 37,500 pounds
Missions fly above 99% of the Earth’s water vapor, enabling studies of the universe at infrared wavelengths

Birth of Stars and Planets
Path to Life: Our Interstellar Origins
Extreme Environments
SOFIA matures and improves to meet new science capability needs!

Instruments span an unprecedented wavelength range by a single observatory.
Do magnetic fields control the spiral structure of this galaxy?

A new instrument on SOFIA is allowing astronomers to study the role of magnetic fields in star and galaxy formation.
Human Exploration and Operations (HEO)

Exploring space beyond low Earth orbit

Ascent Abort (AA)-2

Demonstrate Orion’s Launch Abort System can safely separate and maneuver the crew module away from launch vehicle during an abort in transonic and maximum dynamic pressure flight conditions