

Fostering Learning in the Networked World: The Cyberlearning Opportunity and Challenge

*A 21st Century Agenda for the
National Science Foundation*

Report of the NSF Task Force on Cyberlearning
July 2008

The Future of Cyberlearning: *A vision of the year 2015...*

What Is Cyberlearning?

- The use of *networked* computing and communications technologies to support learning
- Interactions among communities of learners across space and time
- Customized interaction with diverse materials, on any topic, at any age

A Brief History of Technological Advances Making Cyberlearning Possible

Why Is Cyberlearning Important?

- Leverages learning through
 - Communication technologies
 - Students' technology skills
- Extends capacity of educational institutions into life-long learning opportunities
 - Increases public understanding of science
 - Prepares citizens for complex, evolving, global challenges

Recession

Global Warming

Epidemics

Poverty

War

Why Cyberlearning Now?

Task Force Charge

Task Force Members

- **Christine L. Borgman (Chair):** Professor of Information Studies, UCLA
- **Hal Abelson:** Professor of Computer Science and Engineering, MIT
- **Lee Dirks:** Director of Scholarly Communication, Microsoft
- **Roberta Johnson:** Director of Education and Outreach, UCAR
- **Kenneth R. Koedinger:** Professor of Human Computer Interaction / Psychology, Carnegie Mellon University
- **Marcia C. Linn:** Professor of Development and Cognition, UC Berkeley
- **Clifford A. Lynch:** Executive Director, Coalition for Networked Information
- **Diana G. Oblinger:** President, EDUCAUSE
- **Roy D. Pea:** Professor of Education and the Learning Sciences, Stanford University
- **Katie Salen:** Executive Director, Institute of Play
- **Marshall S. Smith:** Director of Education, Hewlett Foundation
- **Alex Szalay:** Professor of Astronomy, Johns Hopkins University

Key Strategies and Opportunities for NSF

- **Strategies:** To promote the growth of a cyberlearning infrastructure
- **Opportunities for Action:** Greatest short-term payoff and long-term promise
- **Themes**
 - Develop and advance technologies
 - Enable students to use data
 - Harness learning data
 - Support broader audiences
 - Sustain cyberlearning materials

Develop and Advance Technologies

- **Strategy:** Promoting new talent and new technology
- **Opportunity:** Using technologies to
 - Coordinate learning across contexts
 - Connect students with remote and virtual laboratories
 - Access interactive virtual or “mixed reality” environments

Ann Myers Medical Clinic in Second Life
Image credit: Scienceroll blog

Enable Students to Use Data

- **Strategy:** Transforming STEM disciplines and K–12 education
 - New ways of looking at and understanding content
 - Preparing students for “computational thinking”
- **Opportunity:** Teaching students and teachers how to harness large amounts of data
 - Scientific research
 - Responsible use of data

Astronomer Caroline Zundel uses the galaxyzoo.org website to classify a spiral galaxy.
Credit: www.galaxyzoo.org

Harness Learning Data

- **Strategy:** Leveraging the data produced by cyberlearning systems
 - Teachers interacting with students and their school assignments
 - Students' educational histories
- **Opportunity:** Encouraging shared systems that allow large-scale deployment, feedback, and improvement

Support Broader Audiences

- **Strategy:** Addressing problems and opportunities with
 - Reapplication of tools and resources
 - Scaling of technology for larger communities
- **Opportunity:** Funding development of resources usable for both research and education

Students learning about photosynthesis in classroom & online activities
Images courtesy of Bill Sandoval, CENSEI

Sustain Cyberlearning Materials

- **Strategy:** Sustaining cyberlearning innovations beyond their initial funding
- **Opportunity:** Guaranteeing future availability of Open Education Resources

SimCalc Project

http://www.kaputcenter.umassd.edu/downloads/products/technical_reports/tr1_1.pdf

iLab Inverted Pendulum:
Mark Schulz, iLab

Task Force Recommendations

1. Build a vibrant cyberlearning field
2. Instill a “platform perspective”
3. Emphasize the transformative power of technology
4. Promote open educational resources
5. Sustain NSF-sponsored projects

1. Build a vibrant cyberlearning field

- Promote cross-disciplinary communities of cyberlearning researchers and practitioners including
 - Technologists
 - Educators
 - Domain scientists
 - Social scientists
- Publish best practices
- Recruit diverse talents

2. Instill a “platform perspective”

- Platform = shared, interoperable designs of hardware, software, and services
- Incorporate and support
 - New technological innovations
 - Fully tested modules for classroom use
- Widely usable now and in the future
- Guidance from expert panel

Current NSF “platforms” to review

- National Science Digital Library (NSDL)
- Innovative Technology Experiences for Students and Teachers (ITEST)

3. Emphasize the transformative power of technology

- Potential for learning, from “K to grey”
- Information and communication technologies that
 - Allow interaction with data, visualizations, remote and virtual laboratories, and experts
 - Bridge multiple learning environments and technologies
- Support teachers’ professional development through
 - Training programs
 - Professional societies
 - Collaborating to create new teaching materials

Intel Classmate PC
Photo credit: Getty Images

Intel Classmate PC
<http://flickr.com/photos/stuardo/1753064186/>

Wikipedia

4. Promote open educational resources

- Make materials available on the web with permission for unrestricted reuse and recombination
- New proposals should plan to make their materials available and sustainable

5. Sustain NSF-sponsored projects

- Maintain cyberlearning innovations beyond the funding of a grant
- Extend initiatives across NSF divisions and create external partnerships

Acknowledgements

- Continued support and advice from NSF leadership
 - Office of Cyberinfrastructure: Daniel Atkins and Diana Rhoten
 - Education and Human Resources: Cora Marrett, Barbara Olds, and Jim Colby
- UCLA graduate student Andrew Lau provided exceptional help and great spirit in making the distributed work of our task force possible.
- Katherine Lawrence, scholar at large, provided text for the Executive Summary and slides
- Jillian Wallis, UCLA, provided illustrations and assembled graphics for the report and slides
- Funded by supplement to NSF Grant # ESI-0352572, William A. Sandoval, Principal Investigator and Christine L. Borgman, co-Principal Investigator