Impact of Rapid Land-Use Change in the Northern Great Plains: Integrated Modeling of Land-Use Patterns, Biophysical Responses, Sustainability, and Economic and Environmental Consequences
Objective:
Given two major drivers in the Northern Great Plains, **climate change** and production of **biomass for energy**, model alternative landscape trajectories to test whether land-use patterns driven largely by economic considerations are sustainable.
Team:
USGS Earth Resources Observation and Science (EROS) Center
Shuguang Liu (biogeochemical and hydrologic modeling)
Terry Sohl (landscape forecasting)
Alisa Gallant (landscape forecasting, risk analysis for wildlife)

University of Minnesota
Stephen Polasky (environmental economics)

USGS Northern Prairie Wildlife Research Center
Chip Euliss (ecosystem services, wildlife habitat)
David Mushet (wildlife habitat)

USGS Upper Midwest Environmental Science Center
Walt Sadinski (wildlife habitat)

PLUS – a large extended family
Alternative biofuels

“First generation” biofuels: food-based biofuels that are currently commercially available:
 – Corn-grain ethanol
 – Soybean biodiesel
 – Sugar cane ethanol
 – Palm oil biodiesel

“Second generation” biofuels: cellulosic biofuels
 – Switchgrass
 – Diverse prairie biomass
Alternative biofuels

“First generation” biofuels: food-based biofuels that are currently commercially available:

- Corn-grain ethanol
- Soybean biodiesel
- Sugar cane ethanol
- Palm oil biodiesel

“Second generation” biofuels: cellulosic biofuels

- Switchgrass
- Diverse prairie biomass
Forecasting alternative landscapes

A Climate change scenarios
- Climate
- Soils
- Terrain
- Other factors

B Economic & policy drivers
- Land-use history

C Land cover
- Climate
- Soils
- Terrain
- Other factors

D Regional flux tower data extrapolation
- Fertilizer database

E Crop yield
- Estimated biomass
- Est. greenhouse gas emissions
- Biogeochemical assessments
- Estimated erosion rates
- Estimated nutrient input to surface/groundwater
- Wildlife habitat

F Ag. profitability
- Energy budget
- Climate-change pollutants
- Ecosystem quality and sustainability
 - Total C account
 - Soil productivity
 - Air quality
 - Water quality
 - Habitat

Input data/info.
- Models
- Outputs
- Env./econ. assessment

Models
- BASINS distributed hydrologic analysis system
- GEMS

Output data
- Production costs
- Crop prices

Refined NLCD (base landscape)
- Refined land-use history data
Forecasting alternative landscapes

- **A1b**: “business as usual”
- **A2**: IPCC high-change scenario
- **B1**: IPCC low-change scenario

Environmental

- Climate change scenarios
- Climate
- Soils
- Terrain
- Other factors

Economic & policy drivers

- Land-use history
- Crop prices
- Production costs
- Ecosystem quality and sustainability

Total C account

- Soil productivity
- Air quality
- Water quality
- Habitat

Climate-change pollutants

Energy budget

Ecosystem quality and sustainability

- Total C account
- Soil productivity
- Air quality
- Water quality
- Habitat

Refined NLCD (base landscape)

- Refined land-use history data

Models

- Regional flux tower data
- Fertilizer

Outputs

- Estimated nutrient input to surface-groundwater
- Wildlife habitat

Input data/info.

- Ag. profitability
- Climate
- Energy budget
- Climate-change pollutants
- Estimated biomass
- Crop yield

Refined NLCD (base landscape)

Forecasting alternative landscapes

- A1b: “business as usual”
- A2: IPCC high-change scenario
- B1: IPCC low-change scenario
Forecasting alternative landscapes

Basis for prescription (incentive) for annual land-use change
- External demand
- External prices
- Estimated supply

Query landscape capability to respond to demand
Example ingredients used by FORE-SCE

- IPCC climate change predictions
- Policy/program requirements and incentives
- Contemporary land-conversion characteristics

Modified 1992 NLCD
- Soils - STATSGO
- Proximity to Transportation
- Population Data

Climate Data (DAYMET)
- County-based Socioeconomic Data
- Agricultural Census
- Distance to Urban Centers
FORE-SCE

Regression-based probability surfaces developed for each land-cover type
Forecasting alternative landscapes

- Demand module
- Fore-SCE
- Spatial allocation module
- BASINS distributed hydrologic analysis system
- Annual landscape information

Input data/info.
Models
Outputs.
Env./econ. assessment

- Economic & policy drivers
- Land-use history
- Climate Soils Terrain Other factors
- Crop prices
- Production costs
- Crop prices
- Ag. profitability
- Energy budget
- Climate-change pollutants
- Ecosystem quality and sustainability
- Tot. C account.
- Soil productivity
- Air quality
- Water quality
- Habitat

- Estimated erosion rates
- Estimated nutrient input to surface/groundwater
- Estimated biomass
- Crop yield
- Est. greenhouse gas emissions
- Biogeochemical assessments

- Wildlife habitat
- Refined NLCD (base landscape)
- Refined land-use history data
- Climate change scenarios
- Economic & policy drivers
- Land-use history

- Regional flux tower data extrapolation
- Fertilizer database

Climate
Soils
Terrain
Other factors

USGS
Forecasting alternative landscapes

- **Climate change scenarios**
 - Climate
 - Soils
 - Terrain
 - Other factors

- **Economic & policy drivers**
 - Land-use history

- **Land cover**
 - Climate
 - Soils
 - Terrain
 - Other factors

- **Demand module**
 - Refined NLCD (base landscape)
 - Refined land-use history data

- **Spatial allocation module**

- **Regional flux tower data extrapolation**

- **Fertilizer database**

- **Crop yield**
 - Estimated biomass
 - Est. greenhouse gas emissions
 - Biogeochemical assessments

- **Estimated erosion rates**

- **Estimated nutrient input to surface/groundwater**

- **Wildlife habitat**

- **Production costs**
 - Crop prices

- **Ag. profitability**

- **Energy budget**

- **Climate-change pollutants**

- **Ecosystem quality and sustainability**
 - Tot. C account
 - Soil productivity
 - Air quality
 - Water quality
 - Habitat

- **GEMS**

- **BASINS distributed hydrologic analysis system**

- **Annual landscape information**

- **Models**

- **Outputs.**

- **Env./econ. assessment**

- **Input data/info.**
Forecasting alternative landscapes

- **Demand module**
- **FORE-SCE**
- **Spatial allocation module**
- **BASINS distributed hydrologic analysis system**

- **Annual landscape information**
 - Land cover
 - Climate
 - Soils
 - Terrain
 - Other factors

- **Economic & policy drivers**
 - Land-use history
 - Crop prices
 - Production costs

- **Environmental information**
 - Economic & policy drivers
 - Land-use history
 - Climate change scenarios

- **Regional flux tower data extrapolation**

- **Fertilizer database**
 - Crop yield
 - Estimated biomass
 - Est. greenhouse gas emissions
 - Biogeochemical assessments
 - Estimated erosion rates
 - Estimated nutrient input to surface/groundwater

- **GEMS**
 - Ag. profitability
 - Energy budget
 - Climate-change pollutants
 - Ecosystem quality and sustainability
 - Tot. C account
 - Soil productivity
 - Air quality
 - Water quality
 - Habitat

- **Wildlife habitat**

- **Input data/info.**
- **Models**
- **Outputs.**
- **Env./econ. assessment**
Forecasting alternative landscapes

- **A** Climate change scenarios
 - Climate
 - Soils
 - Terrain
 - Other factors
- **B** Economic & policy drivers
 - Land-use history
- **C** Demand module
 - Fore-SCE
 - Environmental information
 - Spatial allocation module
- **D** Annual landscape information
 - Land cover
 - Climate
 - Soils
 - Terrain
 - Other factors
- **E** BASINS distributed hydrologic analysis system
 - Regional flux tower data extrapolation
 - Fertilizer database
 - Crop yield
 - Estimated biomass
 - Est. greenhouse gas emissions
 - Biogeochemical assessments
 - Estimated erosion rates
 - Estimated nutrient input to surface/groundwater
 - Wildlife habitat
- **F** Production costs
 - Crop prices
 - Ag. profitability
 - Energy budget
 - Climate-change pollutants
 - Ecosystem quality and sustainability
 - Tot. C account
 - Soil productivity
 - Air quality
 - Water quality
 - Habitat

Input data/info.
Models
Outputs.
Env./econ. assessment

-USGS-
Services through time

- Water Quality
 - Relative Ann. Discharge
 - Dissolved Phosphorus

- Potential Soil Conservation
 - Rate of Soil Erosion in
 - Metric Tons

- Carbon Sequestration
 - Metric Tons

- Biodiversity
 - Countryside SAR

- Storm Peak Management
 - Unitless

- Market Value
 - Constant Year
 - 2008 Dollars

Legend:
- **Plan Trend**
- **Development**
- **Conservation**
The model predicts that this catchment provided adequate habitat in 1991 to support 1 breeding pair of blue-winged teal.

The model graphs actual precipitation and estimates associated water level and evapotranspiration for the selected catchment for a specified time interval.
Future Midwestern Landscapes
U.S. EPA

- Improve society’s ability to incorporate ecosystem services into decision-making
- Address concerns about biofuels
- Facilitate development of ecosystem service markets
Randy Bruins
National Exposure Research Laboratory
U.S. Environmental Protection Agency
Cincinnati, OH
Email: bruins.randy@epa.gov