MEDICAL RESEARCH IN POLAND: OPPORTUNITIES FOR COOPERATION

Wojciech Maksymowicz
Professor of neurosurgery
Head of Department of Neurosurgery
Dean of Medical Faculty
University of Warmia and Mazury in Olsztyn
12 Polish Medical Schools
Polish Governemental Research
Medical Institutes

Cancer and … Cardio-vascular+rheumatology

Children and mother health Psychiatry+
Neurology+
Audiology

Public health, food and drug and occupational me
Polish Academy of Sciences
Division VI Medical Sciences

Mossakowski Medical Research Centre
Polish Academy of Sciences

Warsaw

Łódź

Kraków

Poznań

Wrocław

Institute for Medical Biology
Centre of Excellence in Medical
Polish Academy of Sciences
Biology

BIOLMED

Institute of Pharmacology
Center of Excellence in Neuropsychopharmacology - FRAM

Ludwik Hirszfeld Institute of Immunology
and Experimental Therapy
Health

1. Epidemiology of lifestyle diseases.
3. Nervous system function; diagnosis and treatment of psychiatric and neurological diseases.
4. Regenerative medicine (stem cells and ...)
5. New technologies in pharmacotherapy
Restorative neurology.
Improving function without structural damage.
Restorative neurosurgery

Electrical stimulation

Delivery drugs into the CSF spaces and brain

Stem cells Implantation
Historic, contemporary and future surgical treatment of refractory epilepsy.

Wojciech S. Maksymowicz

Department of Neurosurgery,
Central Clinical Hospital of Ministry of Internal Affairs and Administration (MSWiA), Warsaw, Poland
The beginning of the research on epilepsy was common for eastern and western world.
<table>
<thead>
<tr>
<th>Person</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caton</td>
<td>1875</td>
</tr>
<tr>
<td>Fleischl von Marxow</td>
<td>1890</td>
</tr>
<tr>
<td>Beck</td>
<td>1890</td>
</tr>
<tr>
<td>Danilewsky</td>
<td>1891</td>
</tr>
<tr>
<td>Gotch and Horsley</td>
<td>1891</td>
</tr>
<tr>
<td>Beck and Cybulski</td>
<td>1892</td>
</tr>
<tr>
<td>Larinow</td>
<td>1898</td>
</tr>
<tr>
<td>Trivus</td>
<td>1900</td>
</tr>
<tr>
<td>Tchiriev</td>
<td>1904</td>
</tr>
<tr>
<td>Kaufman</td>
<td>1912</td>
</tr>
<tr>
<td>Prawdicz-Neminski</td>
<td>1913</td>
</tr>
<tr>
<td>Cybulski and Macieszyna</td>
<td>1919</td>
</tr>
<tr>
<td>Prawdicz-Neminski</td>
<td>1925</td>
</tr>
<tr>
<td>Berger</td>
<td>1929</td>
</tr>
<tr>
<td>Bartley and Newman</td>
<td>1930</td>
</tr>
<tr>
<td>Bartley and Newman</td>
<td>1931</td>
</tr>
<tr>
<td>Travis and Herren</td>
<td>1931</td>
</tr>
<tr>
<td>Travis and Dorsey</td>
<td>1931</td>
</tr>
<tr>
<td>Davis and Saul</td>
<td>1931</td>
</tr>
<tr>
<td>Adrian</td>
<td>1931</td>
</tr>
<tr>
<td>Adrian and Buytendijk</td>
<td>1931</td>
</tr>
<tr>
<td>Bishop and Bartley</td>
<td>1932</td>
</tr>
<tr>
<td>Travis and Dorsey</td>
<td>1932</td>
</tr>
<tr>
<td>Fischer</td>
<td>1932</td>
</tr>
<tr>
<td>Kornmüller</td>
<td>1932</td>
</tr>
<tr>
<td>Perkins</td>
<td>1933</td>
</tr>
<tr>
<td>Bartley</td>
<td>1933</td>
</tr>
<tr>
<td>Gerard, Marshall, and Saul</td>
<td>1933</td>
</tr>
</tbody>
</table>

Who discovered and developed EEG before Lord Edgar Douglas Adrian (by Donald B. Lindsley)
Adolf Beck (1863-1942)

Polish neurophysiologist of Jewish origine, professor and rector of Jan Kazimierz University in Lwów. He did not know about Caton`s works and undependently discovered the spontaneous electric activity of brain (later known as electroencephalography). Main topics of his scientifical activity: the use of neurophysiology for the localization of brain functions (mainly sensoric). Die Ströme der Nervencentren. Centerblatt für Physiologie, 4:572-573, 1890.

He dramatically decided to suicide in German nazi camp for Jewish people in Janowiec in 1942.
Galvanometric record of brain cortex activity. A. Beck and N. Cybulski (published in Polish journal in 1896r. „Dalsze badania zjawisk elektrycznych w korze mózgowej”)
Napoleon Nikodem Cybulski (1854–1919)

He established the Polish School of Neurophysiology, together with Adolf Beck. He published the first recording of experimental epileptic seizure in dog provoked by cortex stimulation (1914).
The first photographic records of bioelectric epileptic seizure caused by electric stimulation of dog’s brain cortex.

Written from right to left.
Curve IV - EKG
Curve III - cortex
Curve II - stimulus
Curve I - time

N. Cybulski and S. Jeleńska Macieszyna 1914.
Intraoperative picture. Subpial transection following the brain resection.

curved hook with the ball during subpial transection
Multiple Subpial Transections in the Dep. of Neurosurgery, Central Clinical Hospital MSWiA, Warsaw

Intraoperative ECoG recording.
Multiple Subpial Transections in the Dep. of Neurosurgery,
Central Clinical Hospital MSWiA, Warsaw
Intraoperative ECoG recording.
Monitoring of the ECoG following every MST

36 years old patient (R.G.) left temporal epilepsy

Stage O (beginning):

Changes in the anterior part of the left temporal lobe

Depression with the signs of the damage under the 13-th and 14-th electrode
Monitoring of the ECoG following every MST

Stage 3

Patient R.G.

Final recording after the MST under the electrode No 20
Electrical Brain Stimulation to Reduce Epileptic Seizures

This study is currently recruiting patients.
Verified by National Institutes of Health Clinical Center (CC) May 2007
Delivery the antyneoplastic and antyepileptic agents into the brain.

„Therapies under development may result in the delivery of AEDs directly to the regions of the brain involved in seizures. Experimental protocols are underway to allow continuous infusion of potent excitatory amino acid antagonists into the CSF. In experiments with animal models of epilepsy, AEDs have been delivered successfully to seizure foci in the brain by programmed infusion pumps, acting in response to computerised EEG seizure detection.”

Fisher RS, Ho J
What and how to delivery?

„CONCLUSIONS: This study showed for the first time that epidural AED delivery can prevent, as well as terminate, locally induced neocortical seizures. The findings support the viability of transmeningeal pharmacotherapy for the treatment of intractable neocortical epilepsy.”

Epidural pentobarbital delivery can prevent locally induced neocortical seizures in rats: the prospect of transmeningeal pharmacotherapy for intractable focal epilepsy.

Deep brain stimulation for the treatment of Parkinson disease, pain and Epilepsy
Restorative neurosurgery
EPIDURAL SPINAL CORD STIMULATION
Restorative neurosurgery
EPIDURAL SPINAL CORD STIMULATION

- **Effective** spinal cord stimulation (SCS) for evoking stepping movement of paralyzed human lower limbs: study of posterior root muscle reflex responses.
- K. Minassian1, B. Jilge1, F. Rattay1, M.M. Pinter2 F. Gerstenbrand3, H. Binder3, M.R. Dimitrijevic4
- **4. Baylor College of Medicine, Houston, TX,**

![Diagram of spinal cord stimulation](image)

Figure 2. Illustration of the epidural spinal cord stimulation. Left side: longitudinal electrode implanted at lumbar

Cooperation with Neurosurgical Dep. of Cambridge University (U.K.)


ICP analysis in hydrocephalus diagnosis
ICP analysis in hydrocephalus diagnosis

Fig. 1. Time trends of the amplitude of the pulse wave (AMP) and the mean pressure level (ICP) registered during the constant rate infusion test by means of the computer system. Note the appearance of the “B” waves in the response to the increasing in the ICP level. Common abscissa: time in minutes from the beginning of the registration.
It is necessary to begin from the delivery of the new ideas to our neurosurgical brain.
Stem cells for neurology and neurosurgery

1. Is possible the neuronal differentiation of the stem cells?
2. Could SC be used for the treatment of injured spinal cord or brain?
3. Could SC be used for the treatment of other brain or spine degeneration?
4. Could SC be used for the treatment of peripheral nerves injury?
5. Could SC be used for the treatment of brain tumors?
6. Could SC be used for the treatment of degenerated intervertebral discs?
Restorative neurosurgery
Warsaw research.
Stem cells for neurosurgery

Restorative neurosurgery

Stem cells for neurosurgery

Voltage-Sensitive and Ligand-Gated Channels in Differentiating Neural Stem-Like Cells Derived from the Nonhematopoietic Fraction of Human Umbilical Cord Blood
Wei Sun, Leonora Buzanska, Krystyna Domanska-Janik, Richard J. Salvi and Michal K. Stachowiak

Stem Cells 2005;23:931-945
DOI: 10.1634/stemcells.2004-0316

This information is current as of August 21, 2007
Restorative neurosurgery

Stem cells for neurosurgery

Figure 3. Immunolabeling of (A) glycine, (B) acetylcholine-nicotinic, (C) 5-HT, and (D) D2 dopamine receptors in human umbilical cord blood differentiated neural stem cells. Goat anti-mouse Alexa 555 secondary antibody used to detect acetylcholine and 5-HT receptors; goat anti-rabbit Cy3 used to detect glycine and D2 receptors. Nuclei stained with ToPro-3. Scale bar: 50 µM. Abbreviation: 5-HT, 5-hydroxytryptamine.
Restorative neurosurgery

Stem cells for neurosurgery

Neurit
Could SC be used for the treatment of injured spinal cord or brain?

Norman Ende MD Capt. Mc USNR (ret)
Professor of Pathology and Laboratory Medicine

Kenneth G. Swan, MD Col. MC USAR (ret)
Professor of Surgery/Trauma

Human Umbilical Cord Blood Treatment of United States Soldiers following Neurological Injury

I. TBI and Iraq and Afghanistan: the need for treatment

II. Infant and fetus display increased ability to heal neurological damage
Could SC be used for the treatment of injured spinal cord or brain?

III. Evidence that cord blood can produce neurological cells

   a. InVitro

Buzanska and Jurga have developed a body of literature describing in vitro neuronal differentiation of human umbilical cord blood (Buzanska et al., 2005; Buzanska et al., 2006a; Buzanska et al., 2006b; Jurga et al., 2006a; Jurga et al., 2006b). Mononuclear cells isolated from whole human umbilical cord have been able to develop neural precursors in vitro (Kogler et al., 2004). Interestingly, Sun reports that he can develop neural cells by invitro culture of the nonhematopoietic fraction of human umbilical blood (Sun et al., 2005).
Could SC be used for the treatment of injured spinal cord or brain?

Not only „Hardware”
Could SC be used for the treatment of injured spinal cord or brain?

IX. Conclusion

There is solid evidence that cord blood cells can both produce neural cells in vitro and provide protective support following neurological trauma. Furthermore, there is strong evidence that cord blood cell transfusions, frozen or fresh, are safe or safer than blood transfusion from an adult donor.

With the larger number of neurological injured marines and soldier, failure to attempt to improve their recovery via a very safe procedure could be considered a tragedy.

Norman Ende MD Capt. Mc USNR (ret)
Professor of Pathology and Laboratory Medicine

Kenneth G. Swan, MD Col. MC USAR (ret)
Professor of Surgery/ Trauma
Could SC be used for the treatment of other brain or spine degeneration?

• Stroke

• Parkinson disease

• Amyotrophic Lateral Sclerosis (ALS)
Could SC be used for the treatment of other brain or spine degeneration?

**Stroke**

H. Kozłowska, J. Jabłonka, M. Janowski, M. Jurga, M. Kossut, K. Domańska-Janik:

Could SC be used for the treatment of brain tumors?
Could SC be used for the treatment of malignant brain tumors?

For the exceptional self-renewal capacity, regulated cell proliferation and differential potential to a wide variety of cell types, the stem cells must maintain the intact genome. The cells under continuous exogenous and endogenous genotoxic stress accumulate DNA errors, drive proliferative expansion and transform into cancer stem cells with a heterogeneous population of tumor cells. These cells are a common phenomenon for the hematological malignancies and solid tumors. In response to DNA damage, the complex cellular mechanisms including cell cycle arrest, transcription induction and DNA repair are activated. The cells when exposed to cytotoxic agents, the apoptosis lead to cell death. However, the absence of repair machinery makes the cells resistant to tumor sensitizing agents and result in malignant transformation. Mismatch repair gene defects are recently identified in hematopoietic malignancies, leukemia and lymphoma cell lines. This review emphasizes the importance of MMR systems in maintaining the stem cell functioning and its therapeutic implications in the eradication of cancer stem cells and differentiated tumor cells as well. The understanding of the biological functions of mismatch repair in the stem cells and its malignant counterparts could help in developing an effective novel therapies leaving residual non-tumorigenic population of cells resulting in potential cancer cures.
Could SC be used for the treatment of malignant brain tumors?

Neural SCs possess robust tropism for infiltrating tumor cells.

NSCs can be used to deliver therapeutic agents directly to tumor satellites, with significant therapeutic benefit.
Could SC be used for the treatment of degenerated intervertebral discs

PLDD effect – own material
Could SC be used for the treatment of degenerated intervertebral discs?
Could SC be used for the treatment of degenerated intervertebral discs?

Original way of Stem Cells implantation to the Nucleus Pulposus
Could SC be used for the treatment of degenerated intervertebral discs?

Discographic image – own material
Cardiovascular diseases
Transvascular or direct application

SELECTED HEART CELL-THERAPY TRIALS

Trials of bone-marrow cells dominate the field of heart stem-cell therapy. All except the Osiris trial use patients’ own cells.

<table>
<thead>
<tr>
<th>Sponsor</th>
<th>Cell type</th>
<th>Phase</th>
<th>Expected enrolment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioheart, Munich, Germany</td>
<td>Skeletal myoblasts</td>
<td>II/III</td>
<td>390</td>
</tr>
<tr>
<td>Osiris Therapeutics, Columbia, Maryland</td>
<td>Mesenchymal stem cells</td>
<td>II</td>
<td>220</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center, Los Angeles, California</td>
<td>Cells from heart biopsies</td>
<td>I</td>
<td>30</td>
</tr>
<tr>
<td>Ministry of Health, Brazil</td>
<td>Bone-marrow cells</td>
<td>III</td>
<td>300</td>
</tr>
<tr>
<td>Johann Wolfgang Goethe University Hospitals, Frankfurt, Germany</td>
<td>Bone-marrow cells</td>
<td>III</td>
<td>200</td>
</tr>
<tr>
<td>Barts and The London NHS Trust, UK</td>
<td>Bone-marrow cells</td>
<td>II/III</td>
<td>165</td>
</tr>
<tr>
<td>Seoul National University Hospital, Korea</td>
<td>Circulating blood cells</td>
<td>II/III</td>
<td>116</td>
</tr>
</tbody>
</table>

Source: clinicaltrials.gov
Cardiovascular diseases

Joshua Hare, of the University of Miami in Florida, says his team will soon report results from a phase II trial of mesenchymal stem cells, run by Osiris Therapeutics of Columbia, Maryland, showing that the cells both engraft as new cardiomyocytes and help through the paracrine effect.

NATURE|Vol 460|2 July 2009
SCs for the treatment of skin defects
Dr. Maria Michejda important advices.

- Preparation of Fetal SCs for implantation
- Ethical advices

Dr. M. Michejda (right)
Dr. E. Buda-Okręglak – president of PAHA (left)
Restorative neurosurgery

Stem cells for neurosurgery

Is possible the neuronal differentiation of the stem cells?

The Warsaw Research Group
Prof. K. Domanska-Janik and the staff
from Polish Academy of Science,
Department of Neurorepair
Warsaw
• Researchers find adult cells that mimic embryonic stem cells
• December 12th, 2005
• Researcher Mariusz Ratajczak - director of the stem cell biology program at U of Louisville James Graham Brown Cancer Center, who led the research project.
Multicenter study on Stem Cells coordinatesd by Medical University in Szczecin (prof. Ratajczak)

2009-08-20 (23:54)
NATO Anniversary Celebration in Szczecin at Waly Chrobrego, September 19th–20th Multinational Corps Northeast (MNC NE) with its Headquarters (HQ) located in the Baltic Barracks in Szczecin is a part of the NATO Force Structure.
KRAKOW
JAGIELLONIAN
UNIVERSITY

Hemopoietic Stem Cells
Transplantation Ward

Department
of Transplantology

Stem Cell
Excellence Centre

Head - Marcin
Majka MD, PhD
• Assessing the efficacy and safety of using intracoronary autologous bone marrow transplantations in treating patients with early post-infarction left ventricular dysfunction.
Establishing of the Stem Cells Laboratory (the first cost= 6 mln $)
To promote the progress of medical sciences

Modern Stem Cells Laboratory
– project partly supported by EU
To promote the progress of medical sciences

Priorities:

• Cardiology

• Neurology (Stroke, Degenerative diseases)

• Oncology
To promote the progress of medical sciences

**Oncology**

Looking for the new drugs against the cancer and use of new technologies in pharmacotherapy

Possible cooperation with the Cancer Centers in Warsaw and Gliwice

and with the MD Anderson Cancer Center in Houston
To promote the progress of medical sciences

There are only few single procedures not realised in Poland.

There is lack of the CYBERKNIFE!

Why the Cyberknife?

-Because it is accurate stereoradiosurgery

- Because it is stereoradiosurgery dedicated not only for the brain, but also for the treatment of the lung, spine and abdominal tumors
To promote the progress of medical sciences

Oncology

Bunker for Cyberknife
To promote the progress of medical sciences

NEW IDEAS CAN BE INTRODUCED IN YOUNG MEDICAL FACULTY OF OUR UNIVERSITY
To promote the progress of medical sciences

Nicolaus Copernicus who lived in Olsztyn Castel invited new medical students
Why the first Cyberknife could be located in Olsztyn? BECAUSE NEW IDEAS CAN BE INTRODUCED IN YOUNG MEDICAL FACULTY OF OUR UNIVERSITY AND THEN SPREAD TO OTHER REGIONS OF THE POLAND!
To promote brain research in Europe and to improve the quality of life of those affected by brain diseases.

<table>
<thead>
<tr>
<th></th>
<th>Total in FP6</th>
<th>FP7 first 3 calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>260m</td>
<td>381m</td>
</tr>
<tr>
<td>Cancer</td>
<td>485m</td>
<td>265m</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>124m</td>
<td>111m</td>
</tr>
</tbody>
</table>

European Parliament
Poland – growing up (↑ 1.7%)
Smart Growth: Bridging Academia and SMEs in the Baltic Sea Region
Smart Growth: Bridging Academia and SMEs in the Baltic Sea Region

Organisation of the SMS-BSS module Project Incubation and Management
(Prepared by Wolfgang Blank, BioCon Valley, June 2009)
BaltNet

International Baltic Biomedical Research Center in Olsztyn

University of Warmia and Mazury in Olsztyn
University of Turku (Finland)
University of Greifswald, Germany

Invitation addressed to MD Anderson Cancer Center in Houston
Building the bridges

Ralph Modjeski (1861-1940)
Polish Immigrant Becomes Famous Engineer and Bridge Builder

He was also honored by the Pennsylvania state legislature in 1966 by a resolution citing him as one of America's "greatest inventors".
There are not only symbols

There are needs of cooperation