

PESC Guidelines for XML
Architecture and Data Modeling

Version 3.0

April 29, 2005

A publication of the

Postsecondary Electronic Standards Council (PESC)

© Postsecondary Electronic Standards Council (PESC) 2005. All Rights Reserved.

This document may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. This
document itself, however, may not be modified in any way except when expressly approved by
PESC for the purpose of developing standards and specifications.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page i

Executive Summary

Business Problem
Historically, the companies, agencies, and institutions that comprise the education community
at large have developed their systems, data models, and data standards independently. This
has resulted in a lack of common data definitions and enterprise data standards across the
education domain. While the need to conduct business electronically has increased
dramatically in recent years, differing data definitions have made mapping and analyzing data
between systems difficult, and, consequently, have hindered the building of standard interfaces
that ensure data quality and consistency.

Solution
Recognizing the need to standardize its own business processes and data definitions, the
Department of Education’s Office of Federal Student Aid (FSA) in 2000 embarked upon a
comprehensive plan to rationalize its existing systems and processes and base data exchange on
XML. In 2002, this initiative was aligned with a broader community initiative when FSA began
to work with the Postsecondary Electronic Standards Council (PESC) and the National Council
of Higher Education Loan Programs (NCHELP) on the development and design of an XML
standard for higher education. Based on the principles originally codified in FSA’s XML
Framework, this standard seeks to provide all stakeholders maximum benefit from the adoption
of XML technology through better, faster, and cheaper information exchange.

Now under the direction of PESC, this community-wide standards initiative seeks to establish
enterprise definitions for data that is commonly exchanged by members of the education
community as well as the policies, procedures, and standards that will guide further
developments. These goals are embodied in two distinct mechanisms maintained by PESC:

• XML Core Component Dictionaries
• Guidelines for XML Architecture and Data Modeling

Together, these components provide a robust technical foundation that ensures quality,
consistency, and longevity of data exchange interfaces.

Core Components
Core Components are reusable data structures, modeled in XML that provide standard
definitions for key business concepts and entities across the education domain. Having a
common set of data definitions and XML models will help the community improve data quality
and integration services between disparate systems that must work together. The initial Core
Component Dictionaries have been jointly developed by the community under the auspices of
PESC, and are now available via the PESC/FSA XML Registry and Repository.

Guidelines for XML Architecture and Data Modeling
Core Components, to be useful for exchanging data, must be assembled into message
specifications. Furthermore, message specifications and the Core Components upon which they
are based must expand and evolve as business needs change. To guide these processes, this
document, the PESC Guidelines for XML Architecture and Data Modeling, and its companion

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final ii

volume, the Standards Forum Policies and Procedures Manual, have been developed. These
documents are to be used in conjunction with the XML Core Component Dictionaries to
provide the methodology, standards, conceptual framework, and policies needed to assemble,
maintain, and expand standard, consistent message specifications.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page iii

Table of Contents

EXECUTIVE SUMMARY ...I

TABLE OF CONTENTS ...III

TABLES AND FIGURES .. VI

1 INTRODUCTION ... 1
1.1 OVERVIEW .. 1
1.2 PURPOSE ... 1
1.3 SCOPE ... 2
1.4 INTENDED AUDIENCE... 2
1.5 ORGANIZATION OF THE DOCUMENT.. 2
1.6 ASSUMPTIONS ... 3

2 OVERVIEW OF XML.. 4
2.1 THE BASICS OF XML... 4

Simple Elements .. 4
Complex Elements ... 4
Maximum Length Values.. 5
Leading Zeros.. 5

2.2 XML SCHEMAS ... 6
2.3 XML INSTANCE DOCUMENTS .. 7
2.4 SUMMARY ... 7

3 XML SCHEMA DESIGN BEST PRACTICES.. 8
3.1 DEVELOPING REUSABLE XML STRUCTURES... 8

Complex Types .. 9
Named Types ... 11
Groups .. 12

3.2 HIDE VS. EXPOSE NAMESPACES.. 12
3.3 ELEMENT CONSTRUCTION.. 14

Overview ... 14
Russian Doll Design .. 15
Salami Slice Design ... 15
Venetian Blind Design (Strongly Recommended) .. 16
Conclusion .. 16

3.4 EXPLICIT VERSUS GENERIC NAMES FOR ELEMENTS .. 16
Elements with Structural Differences.. 17
Understand Child Element Semantics... 18
Tightly Constrained Relationships.. 18
Conveying Ancillary Information ... 19

3.5 USE OF ELEMENTS VS. ATTRIBUTES.. 19
3.6 OBJECT – ORIENTED DESIGN.. 23

Subclassing and Composition... 23
Design by Subclassing ... 23
Design by Composition .. 24
Derivations.. 26
Derivation by Extension... 26
Derivation by Restriction ... 26
Limiting Derivations .. 27
Redefines ... 28

3.7 FLEXIBLE ARCHITECTURES .. 28

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final iv

Choice Groups... 28
Substitution Groups ... 29
Abstract Type and Type Substitution... 30

3.8 NULL VALUES VS. EMPTY STRINGS .. 32
3.9 ENUMERATIONS AND CODE LISTS... 32

4 PESC XML SCHEMA STRUCTURE.. 36
4.1 NAMING CONVENTIONS ... 37

Overview ... 37
Naming Standards ... 37
Core Component Dictionary Entry Name Convention... 37
XML Types and XML Tags... 38
XML Type Definition Name Convention ... 39
XML Tag Name Convention ... 39
Schema Document Root Element Naming Convention... 40

4.2 NAMESPACE CONVENTIONS ... 40
Description.. 40
Naming of Namespaces.. 41
Application of Namespaces .. 41
Description.. 41
Approach... 42

5 DESIGN PATTERNS FOR CORE COMPONENTS... 44
5.1 ENTITY IDENTIFIERS .. 44

Description.. 44
Code.. 44
Example .. 45

5.2 PERSON IDENTIFIERS.. 46
Description.. 46
Code.. 46
Example .. 46

5.3 USER-DEFINED EXTENSIONS .. 47
Description.. 47
Code.. 47
Example .. 48

5.4 NAME/VALUE PAIRS .. 49
Description.. 49
Code.. 49
Example .. 50

6 XML SCHEMA DEVELOPMENT METHODOLOGY .. 51
6.1 OVERVIEW .. 51
6.2 GATHER REQUIREMENTS AND DATA DEFINITIONS .. 51
6.3 LOOK UP DATA DEFINITIONS IN CORE COMPONENT REGISTRY AND REPOSITORY................................... 51

Metadata Essential for XML Syntax ... 51
Data Types .. 52
Aggregate Items... 52
Analysis Orientation .. 53

6.4 ASSEMBLE SCHEMA... 54
6.5 TEST SCHEMA ... 54
6.6 DEPLOY SCHEMA... 54

7 XML SCHEMA OBJECT MANAGEMENT ... 55
7.1 OVERVIEW .. 55
7.2 CLASSIFICATION OF OBJECTS ... 55

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page v

Overview ... 55
PESC XML Registry Classification Scheme.. 56

7.3 VERSIONING OF OBJECTS ... 57
Overview ... 57
Versioning Techniques... 57
Core Component Versioning .. 57
Core Component Library Versioning.. 58
Sector Library Versioning .. 59
XML Schema Message Specification Versioning... 60

APPENDIX A: REVISION HISTORY ... 1

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final vi

Tables and Figures
Tables

Table 4.1 – Example Application of Naming Convention...40

Figures

Figure 2.1 – Basic XML Schema Example ...6
Figure 2.2 – Basic XML Instance Document Example..7
Figure 3.1 – Design by Subclassing Diagram ...24
Figure 3.2 – Design by Composition Diagram...25
Figure 4.1 – Address Line Core Component Example...36

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 1

1 Introduction

1.1 Overview
This document, the Guidelines for XML Architecture and Data Modeling, provides information
for developers and implementers of PESC-compliant XML.

Based on PESC’s XML Technical Specification for Higher Education, and the XML Technical
Reference and Usage Guidelines – developed by the Department of Education’s Office of
Federal Student Aid (FSA) to guide its usage of XML – it has been revised and expanded by
members of the Standards Forum for Education to be a community-wide document. Every
effort has been made to build on the experience and work done previously by other standards
organizations within and outside of Higher Education: W3C, ebXML, IFX, X12, CommonLine,
IMS, IEEE, and ISO, among others.

The reference information provided herein is based on standards and best practices that the
PESC membership has developed on community-wide XML Schema development projects.
Specifically, these standards and guidelines have been developed through the process of
implementing the Common Origination and Disbursement (COD) Common Record and
Academic Transcript, as well as defining the draft XML schemas for a number of other
initiatives (i.e., Institutional Student Information Record [ISIR] and CommonLine). These
guidelines will help developers create XML interfaces which are consistent with PESC's XML
standards in order to achieve industry-wide standardization and interoperability.

The development of this specification served to clarify, for the Standards Forum, the most
efficient work processes and the ultimate deliverables of the standing and ad hoc work groups
that make up the Standards Forum for Education. As these work groups and their needs evolve
and expand, so will this document, as it will in conjunction with changes to XML and its related
standards.

1.2 Purpose
The purpose of this specification is to guide the work of the Standards Forum, providing a
framework for decisions that face the following groups:

• The Standards Forum as an organization, as its structure changes to meet the needs of
the higher education community

• The higher education community as it implements XML message data exchanges

This document provides the standards and guidelines the education community can use to
ensure consistent and efficient development of XML Schemas for message specifications. It
provides numerous XML examples, best practices, and patterns to which developers can refer.
Ideally, two developers could be assigned a schema development task, be given a set of
requirements, and, using the guidelines in this document, would construct technically similar
XML Schema message specifications. Achieving this type of consistency can aid the community
greatly in improving the quality of data as it is exchanged across organizations.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 2

1.3 Scope
The scope of the XML standards in this specification is the data that institutions and their
partners exchange in support of the business processes within Higher Education, such as
student financial aid, admissions, and registration. While schemas may be designed for other
purposes, such as for data presentation, this is not the primary focus of the Standards Forum.

Since the business processes within Higher Education require data interchange, PESC schemas
are data oriented and may in some cases mirror paper-based documents. Their content models
focus more on semantics (or “content”) than on presentation or structure (where the content
model contains some degree of presentation orientation mixed with semantics). Consequently,
the guidelines and standards in this specification have a similar orientation.

The Guidelines for XML Architecture and Data Modeling provides introductory information on
XML Data Modeling. Specifically, the document includes information on:

• XML Schema Design Best Practices
• XML Schema Design Patterns
• XML Schema Development Methodology

1.4 Intended Audience
The intended audience of this document is the Standards Forum for Education as well as
members of the education community at large wishing to use XML in their data exchanges. It is
targeted to advanced XML Schema developers who need to build complex XML Schema
message specifications, and assumes that the developer is familiar with XML Schema
development.

1.5 Organization of the Document
The Guidelines for XML Architecture and Data Modeling consists of the following sections:

• Section 1: Introduction provides a high level overview, scope, and assumptions of this
document.

• Section 2: Overview of XML provides an introduction to XML. This section is not a
comprehensive exposition on XML, but rather it highlights topics that readers should be
familiar with before reading this document.

• Section 3: XML Schema Design Best Practices provides schema designers with a set of
best practices that should be considered for and used in design projects.

• Section 4: PESC XML Schema Structure describes the layered schema structure and
conventions that have been adopted by PESC.

• Section 5: Design Patterns for Core Components provides specific XML Schema coding
solutions for some of the more common data structures that will be needed for XML
message specifications.

• Section 6: XML Schema Development Methodology describes the design/build/test
methodology that should be followed when developing PESC-compliant schemas.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 3

• Section 7: XML Schema Object Management provides a discussion on managing XML
artifacts, from Core Components, to Sector Libraries, to Message Specifications. It
covers the use of versioning and namespace techniques to manage objects.

• Appendix A: Revision History provides a list of changes to this document since its
initial publication.

1.6 Assumptions
The Guidelines for XML Architecture and Data Modeling is based on the following
assumptions:

• This document is written assuming that the reader has an understanding of XML. It is
not intended to be a comprehensive XML tutorial. It only covers topics that can be
clarified for the purposes of standardization. It is intended to be a guide for PESC
members and the education community in general, to use when implementing XML
throughout the community.

• Developers of new XML Schema message specifications will have access to the Core

Component definitions stored in the PESC XML Registry and Repository for the
Education Community.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 4

2 Overview of XML

2.1 The Basics of XML
eXtensible Markup Language (XML) is a meta-language—a language for describing other
languages—that allows for the design of customized vocabularies for different types of
documents. In an XML document, data is enclosed in tags that “mark-up” the content,
providing it structure and meaning. XML makes it easy for a computer to generate data, read
data, and ensure that the data structure is unambiguous.

XML consists of elements that are defined by tags. A start tag precedes the name of an element.
An end tag follows it. The following is a sample element for a person’s last name.

<LastName>Jones</LastName>

“<LastName>” is the start tag. “Jones” is the data, or XML content. “</LastName>” is the end
tag.

While XML employs the kind of tags used in HTML, XML is not a replacement for HTML.
XML uses tags to identify data elements, or what data is, while HTML uses tags to identify data
attributes, or how data looks. XML can be used in conjunction with HTML to store data within
standard Web pages. It can also be used to store data in files and to pull information from
disparate databases.

Simple Elements
Elements can be either complex or simple. A simple element is one that has no child elements.
In the following example, the simple elements are in bold type.

Simple Elements
<Name>

<FirstName>Heidi</FirstName>
<LastName>Smith</LastName>

</Name>

Complex Elements
A complex element is one that has child attributes and/or elements. In the following example,
the complex element, “Name” is in bold type.

Complex Element
<Name>

<FirstName>Heidi</FirstName>
<LastName>Smith</LastName>

</Name>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 5

Maximum Length Values
XML does not require text data to occupy the maximum length specified for a tag. In the
following example the FirstName element has a maximum length of 12; however, in the correct
example, only 5 characters are included between the start and end tags.

Element Definition
<xsd:element name="FirstName" nillable="true" minOccurs="0">

<xsd:simpleType>
<xsd:restriction base="xsd:string">
 <xsd:minLength value="0"/>

 <xsd:maxLength value="12"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Incorrect Example
<FirstName>Heidi </FirstName>

Correct Example
<FirstName>Heidi</FirstName>

Leading Zeros
XML does not require numeric data to include leading zeros to fill out the maximum value
specified for a tag. In the following example, the TotalCount element has a maximum value of
999,999,999; however, in the correct example, no leading zeros are included in the instance
document.

Element Definition
<xsd:element name="TotalCount" nillable="true" minOccurs="0">

<xsd:simpleType>
 <xsd:restriction base="xsd:integer">

 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="999999999"/>
 </xsd:restriction>
</xsd:simpleType>

</xsd:element>

Incorrect Example
<TotalCount>000000099</TotalCount>

Correct Example
<TotalCount>99</TotalCount>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 6

2.2 XML Schemas
An XML Schema is a collection of element definitions, using an XML format, that specifies the
rules surrounding the logical structure of some collection of data. In essence, it is a vocabulary
that defines the allowed content of XML documents that are based upon it. It defines the
elements present in the document and the order in which they appear, as well as any attributes
that may be associated with an element.

The following example shows a very simple way a Schema designer might implement a Schema
for a movie library.

Figure 2.1 – Basic XML Schema Example

VideoLibrary.xsd

<?xml version="1.0"?>
<xsd:Schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.videolibrary.org"
xmlns="http://www.videolibrary.org"
elementFormDefault="qualified">
 <xsd:element name="VideoLibrary">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Movie" minOccurs="1"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string"/>
 <xsd:element name="Director"
 type="xsd:string"/>
 <xsd:element name="Genre"
 type="xsd:string"/>
 <xsd:element
 name="ReleaseYear"
 type="xsd:gYear"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:Schema>

Schema Root Element:
Namespace Management

Video Library Element:
Element that will hold a
Sequence of Movies.

Movie Element:
Element that will hold a
sequence of Elements
related to the movie

Simple Elements:
Elements used to
represent the movie

http://www.w3.org/2001/XMLSchema
http://www.videolibrary.org
http://www.videolibrary.org

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 7

2.3 XML Instance Documents
Once a Schema is defined, instance documents based on the specifications in the Schema can be
created. An XML instance document represents one possible set of data for a particular markup
language or XML vocabulary. It contains declaration, elements, attributes, and, most
importantly, data that needs to be transferred between applications. It might be saved as a file
or sent over the internet as the payload of a message.

An example instance document based on the Movie Library Schema illustrated in Figure 2.1 is
depicted below.

Figure 2.2 – Basic XML Instance Document Example

2.4 Summary
XML Schema provides a standard typing system for defining markup languages and validating
XML documents. The following sections address best practices and design principles that
should be employed in developing PESC-compliant XML Schemas.

VideoLibrary.xml

<?xml version="1.0"?>
<VideoLibrary xmlns="http://www.videolibrary.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:SchemaLocation="http://www.videolibrary.org
VideoLibrary.xsd">
 <Movie>
 <Title>Movie’s Title</Title>
 <Director>Joe Smith</Director>
 <Genre>Action</Genre>
 <ReleaseYear>2003</ReleaseYear>
 </Movie>
 <Movie>
 <Title>Movie 2’s Title</Title>
 <Director>Joan Spalding</Director>
 <Genre>Comedy</Genre>
 <ReleaseYear>1973</ReleaseYear>
 </Movie>
</VideoLibrary>

Instance Document Root Tag:
Root Element resolves the
namespaces and Schema location

Movie Tag:
Movie Element serves as container
for the elements related to a Movie

Genre Tag:
Genre Tag is an example of one of
the four simple elements used by the
Movie Element.

http://www.videolibrary.org
http://www.w3.org/2001/XMLSchema-instance
http://www.videolibrary.org

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 8

3 XML Schema Design Best Practices
XML Schemas enforce rules around the content of XML instance documents. The W3C XML
Schema language specification describes a fairly complicated syntax for defining these rules.
The complexity is not far different from that of a programming language. It is not surprising,
then, that in many cases, there are several ways to accomplish the same basic goal. There are a
number of different ways a schema can create a framework for identical XML instance
documents.

This section will give schema developers a set of schema design best practices that will be used
in future schema design projects. The best practices will allow XML Schema developers to
develop schemas that employ the following concepts:

• Organization – Concept that Schemas will follow similar organization patterns. This
applies to the physical Schema document, as well as the namespaces where the Schema
objects will reside.

• Consistency – Concept that Schemas should not only have a consistent design pattern,
but that the XML instance documents created should also have a consistent design
pattern.

• Extensibility – Concept that Schemas should be designed to easily allow for additions at
a later date.

• Flexibility – Concept that Schemas should enable and facilitate growth and change as
data transfer requirements change.

• Reuse – Concept that new Schemas should not be built from scratch, but should be able
to leverage previously developed Schemas.

3.1 Developing Reusable XML Structures
In XML instance documents, viewers see XML tags that have data stored between them. These
XML Tags are defined as elements in XML Schemas. The allowable content for an element can
be based on the built-in types provided by XML, such as date, string, and integer.

Example Element #1
<xsd:element name=”BirthDate” type="xsd:date">

Example Tag #1
<BirthDate>1980-04-26</BirthDate>

Example Element #2
<xsd:element name=”PhoneNumber” type="xsd:string">

Example Tag #2
<PhoneNumber>703-292-0694</PhoneNumber>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 9

XML’s built-in types alone are not sufficient to adequately describe Core Components,
however. In the example above, saying that a phone number is a string does not adequately
describe a data type for phone number. For example, according to the definition above for
“PhoneNumber”, data that is not a valid Phone Number may be placed between the
“PhoneNumber” tags without causing a validation error.

Example Tag #2
<PhoneNumber>ThisIsValidInXML,ButNotAValidPhoneNumber</PhoneNumber>

Fortunately, XML Schema provides designers a methodology to extend the base types. Each
primitive data type has a set of optional facets that can be used to describe the valid data for a
particular element. For example, the primitive data type String has the following optional
facets which a Schema designer can use to modify the string data type:

• length
• minLength
• maxLength
• pattern
• enumeration
• whitespace (legal values: preserve, replace, collapse)

In the following example we will create a simple type that can be used to store a phone number
in the following pattern: “###-###-####” (# is a digit 0-9). We will use one of the optional
facets that the string datatype provides to create a simple type for phone number.

Example Simple Type
<xsd:element name=”PhoneNumber”>

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

In this example we use the pattern facet to limit the string datatype. This facet uses regular
expressions. In this example, the pattern is three digits, followed by a “-“, followed by three
digits, followed by a “-“, followed by 4 digits. References for more information on regular
expressions can be found in Appendix A.

Complex Types
Complex types provide designers an additional set of tools to use for building schemas.
Complex types allow schema designers to define child elements and to define attributes for
elements. Attributes allow a schema designer to add an additional level of detail to an element.
Attributes will be discussed in the Attribute Construction section. Child elements allow

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 10

Schema designers to build object hierarchy into their Schema designs. Say that a Schema
designer wanted to model a Movie. Specifically we want to model the following characteristics:

• Title
• Director
• Genre
• Release Year

We would want to create a complex type containing those elements. One way to do this is to
create a Complex Type with a “sequence” of elements.

Example Complex Type Schema Snippet
<xsd:element name=”Movie”>

<xsd:complexType>
<xsd:sequence>

 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Director" type="xsd:string"/>
 <xsd:element name="Genre" type="xsd:string"/>
 <xsd:element name="ReleaseYear" type="xsd:gYear"/>

 </xsd:sequence>
</xsd:complexType>

</xsd:element>

The Schema snippet above shows the creation of an element “Movie” that has four elements.
The first three elements are of type string, and the last is made of type gYear, Gregorian Year.
The instance of this Schema snippet would look like the following:

Example Complex Type Instance Snippet
<Movie>
 <Title>Movie’s Title</Title>
 <Director>Joe Smith</Director>
 <Genre>Action</Genre>

 <ReleaseYear>2003</ReleaseYear>
</Movie>

Complex Types and Simple Types can be used in combination. Assume that the “Genre”
element only has the following valid values:

• Action
• Comedy
• Drama
• Mystery

Example Complex Type and Simple Type
<xsd:element name=”Movie”>

<xsd:complexType>
<xsd:sequence>

 <xsd:element name="Title" type="xsd:string"/>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 11

 <xsd:element name="Director" type="xsd:string"/>
 <xsd:element name="Genre">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

 <xsd:enumeration value="Action"/>
 <xsd:enumeration value="Comedy"/>
 <xsd:enumeration value="Drama"/>
 <xsd:enumeration value="Mystery"/>

</xsd:restriction>
</xsd:simpleType>

 </xsd:element>
 <xsd:element name="ReleaseYear" type="xsd:gYear"/>

 </xsd:sequence>
</xsd:complexType>

</xsd:element>

The previous example instance document would still be valid under this new Schema.
However, the following example would not, because “Science Fiction” is not listed as a possible
enumeration value.

Example Invalid Instance Snippet
<Movie>

<Title>Movie’s Title</Title>
<Director>Joe Smith</Director>
<Genre>Science Fiction</Genre>
<ReleaseYear>2003</ReleaseYear>

</Movie>

Named Types
In the previous examples, the schemas have defined types only when they are declaring
elements. It is also possible to define a type outside of an element declaration. When this is
done, a Schema designer will give the Complex Type or Simple Type a name. This name can be
referenced in any future types or elements that want to use this type.

Example Named Simple Type
<xsd:simpleType name=”PhoneNumberType”>
 <xsd:restriction base="xsd:string">

<xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:element name=”PhoneNumber” type=”PhoneNumberType/>

In this example, a “PhoneNumberType” is defined. This definition is used as the type by the
“PhoneNumber” declaration. Excluding namespace consideration, this user defined type
operates the same way that XML’s primitive types operate.

The use of named simple and complex types is the preferred method for defining types in
PESC-compliant XML Schemas. Named types provide for reusability and common
definitions throughout the higher education domain.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 12

Groups
Groups allow Schema designers to create an association between elements or an association
between attributes. The following example demonstrates how to create a Complex Type by
using a group.

Example Group and Complex Type
<xsd:group name="MovieSupplementalElements">
 <xsd:sequence>

 <xsd:element name="Director" type="xsd:string"/>
 <xsd:element name="Genre">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Action"/>
 <xsd:enumeration value="Comedy"/>
 <xsd:enumeration value="Drama"/>
 <xsd:enumeration value="Mystery"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="ReleaseYear" type="xsd:gYear"/>

 </xsd:sequence>
</xsd:group>

<xsd:element name=”Movie”>

<xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:group ref=”movieSupplementalElements”/>
 </xsd:sequence>
</xsd:complexType>

</xsd:element>

In this example the Schema designer creates a group of elements related to the “Movie” Object.
When defining the “Movie” element, the Schema designer has defined the element “Title”, and
added the elements in the “movieSupplementalElements” group. This Schema snippet
produces a “Movie” element which is equivalent to “Movie” element created in the previous
Schema snippet.

3.2 Hide vs. Expose Namespaces
A typical Schema will use types and elements from multiple Schemas, each with different
namespaces. These namespaces can be hidden (also called localized) or they may be exposed.

The Schema attributes elementFormDefault and attributeFormDefault are the mechanisms for
hiding or exposing namespaces. The attribute value of “unqualified” will hide the namespaces
from the instance documents while the attribute value of “qualified” will expose the underlying
namespaces to the instance documents.

It is important to note that all schemas must have a consistent use of elementFormDefault and
attributeFormDefault. These values only apply to the Schema that they are in and do not apply

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 13

to Schemas that are imported. If there are mixed uses of these attributes then the instance
document will have to include the namespace qualifiers for some elements and not include it
for other elements.

The following examples show the difference between a sample XML snippet in which
namespaces are qualified or exposed, and one in which namespaces are unqualified or hidden.

Qualified:
<?xml version="1.0" encoding="UTF-8"?>
<CRCRequest:CommonRecordCommonline
 xmlns:CRCRequest="urn:org:pesc:message:CommonLineRequest:v1.0.2"
 xmlns:FFEL="urn:org:pesc:sector:Aid-Delivery-FFEL:v1.0.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:org:pesc:message:CommonLineRequest:v1.0.2
CommonLineRequest_v1.0.2.xsd
 urn:org:pesc:sector:Aid-Delivery-FFEL:v1.0.2
FFELAlternative_v1.0.2.xsd"
 DocumentProcessCode="TEST">
 <FFEL:TransmissionData>
 <FFEL:CreatedDateTime>2001-12-31T12:00:00</FFEL:CreatedDateTime>
 <FFEL:DocumentTypeCode>Request</FFEL:DocumentTypeCode>
 <FFEL:Source>
 <FFEL:Lender>
 <FFEL:OPEID>123</FFEL:OPEID>
 <FFEL:NonEDBranchID>456</FFEL:NonEDBranchID>
 <FFEL:OrganizationName>My University</FFEL:OrganizationName>
 </FFEL:Lender>
 </FFEL:Source>

Unqualified:
<?xml version="1.0" encoding="UTF-8"?>
<CRCRequest:CommonRecordCommonline
 xmlns:CRCRequest="urn:org:pesc:message:CommonLineRequest:v1.0.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:org:pesc:message:CommonLineRequest:v1.0.2
CommonLineRequest_v1.0.2.xsd
 DocumentProcessCode="TEST">
 <TransmissionData>
 <CreatedDateTime>2001-12-31T12:00:00</CreatedDateTime>
 <DocumentTypeCode>Request</DocumentTypeCode>
 <Source>
 <Lender>
 <OPEID>123</OPEID>
 <NonEDBranchID>456</NonEDBranchID>
 <OrganizationName>My University</OrganizationName>
 </Lender>
 </Source>

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 14

Schemas should be designed to hide Namespaces1. Hiding namespaces provides for XML
instance documents that are easier to read and understand, most notably when Schemas import
definitions from another namespace. Hiding namespaces moves the complexity of a
document's framework to the Schema level. Restricting instance documents to a single
namespace qualifier at the root level follows the recommendation of the ASC X12 Reference
Model for XML Design.

Additionally, maintenance is easier when hiding namespaces as it is possible to change a
Schema without impact to instance documents.

3.3 Element Construction

Overview
When an element is created, it is created with either local scope or global scope. Local scope
means that the element is only able to be used within the object under which it is created.
Global scope means that the element is able to be reused.

In the “Movie” Schema snippet, the Movie object was created in global scope while the other
elements were created in local scope. This means that only the “Movie” element would be able
to be reused by another element in the Schema.

Schema designers can use the following three element construction patterns:

• Russian Doll Design
• Salami Slice Design
• Venetian Blind Design (Strongly Recommended)

Each of these designs has its advantages and disadvantages. Each methodology of constructing
complex element constructs can yield identical instance documents. Each of the Schemas in the
Element Construction section will produce instance snippets that look like the following:

Example Element Construction Instance Snippet
<Movie>

<Title>Movie’s Title</Title>
<Director>Joe Smith</Director>
<Genre>Action</Genre>
<ReleaseYear>2003</ReleaseYear>

</Movie>

Some approaches, however, offer far more flexibility and reusability than others. The modeling
approach strongly recommended for PESC XML Schema is the Venetian Blind Design,
because it offers maximum reusability with the simplest management of namespace issues.

1 This has been standard practice for XML Schema development. It is not the standard practice for XML-
based web services, however. Consequently, this statement will be revisited by the PESC Technical
Advisory Board in 2005.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 15

Russian Doll Design
The Russian Doll Design defines objects in local scope. When elements are created using this
methodology, a Schema will look very similar to the instance document. However, this limits
the reusability of Schema designs. The Russian Doll Design does facilitate the hiding of
namespaces, which can prevent certain namespace issues like name collisions.

Example Russian Doll Design Schema Snippet
<xsd:element name=”Movie”>

<xsd:complexType>
<xsd:sequence>

 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Director" type="xsd:string"/>
 <xsd:element name="Genre" type="xsd:string"/>
 <xsd:element name="ReleaseYear" type="xsd:gYear"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Salami Slice Design
The Salami Slice Design defines all objects in the global scope. When elements are created using
this methodology, object reuse is very easy. However, a user’s mapping between the Schema
and an instance document will not be as straight forward. It should be noted that this limitation
does not carry over to automated validation of instance documents against Schemas. Since the
Salami Slice Methodology allows for the reuse of elements, Schema designers must be cognizant
of possible issues like name collisions. Name collisions occur when an object with a unique
definition uses the same element type or attribute name as a previously used object. Because
the Salami Slice Design pattern defines objects in a global namespace, name collisions are more
likely to occur. Refer to Section 3.5 for more information on Namespaces.

Example Salami Slice Design Schema Snippet
<xsd:element name=”Movie”>

<xsd:complexType>
<xsd:sequence>

 <xsd:element ref="Title"/>
 <xsd:element ref="Director"/>
 <xsd:element ref="Genre"/>
 <xsd:element ref="ReleaseYear"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Director" type="xsd:string"/>
<xsd:element name="Genre" type="xsd:string"/>
<xsd:element name="ReleaseYear" type="xsd:gYear"/>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 16

With the Salami Slice Design, if a Schema designer also needs to create an element “Book”, the
Schema designer could reuse any of the previously created elements (e.g. “Title” and
“ReleaseYear”) in the creation of the “Book” element.

Venetian Blind Design (Strongly Recommended)
The Venetian Blind Design leverages the design advantages of both the Russian Doll Design
and the Salami Slice Design. It facilitates reuse while also hiding namespace complexities. It
does so by creating type definitions. Instead of actually creating elements and referencing
them, a Schema designer would create a type, and reference that when creating their elements.

Example Venetian Blind Design Schema Snippet
<xsd:simpleType name=”TitleType”>
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name=” DirectorType”>
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name=”GenreType”>
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name=”ReleaseYearType”>
 <xsd:restriction base="xsd:gYear"/>
</xsd:simpleType>
<xsd:complexType name=”MovieType”>

<xsd:sequence>
 <xsd:element name="Title" type=”TitleType”/>
 <xsd:element name="Director" type=”DirectorType”/>
 <xsd:element name="Genre" type=”GenreType”/>
 <xsd:element name="ReleaseYear" type=”ReleaseYearType”/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name=”Movie” type=”MovieType”/>

Conclusion
It is possible to create identical instance documents using any of the three different element
design patterns discussed in this section. However, if an enterprise is striving for data
consistency, a Schema designer must choose one of the element design patterns that facilitate
the reuse of data definitions. This design principle is critical since PESC’s Schemas will be
based on the Core Components stored in the XML Registry and Repository. Since element
reuse is an important design principle for PESC’s Schemas, only Salami Slice Design and the
Venetian Blind Design offer this capability and can be considered. However, when comparing
the Venetian Blind Design to the Salami Slice design, the Venetian Blind Design has the
advantage of hiding namespace complexities. Therefore, the Venetian Blind Design is the
choice most strongly recommended for PESC’s element design pattern.

3.4 Explicit Versus Generic Names for Elements
The Standards Forum has had ongoing discussions regarding the best approach for modeling
data elements or groups of data that are similar in concept but have different data requirements
or meanings in the context of a business document. Examples include differentiating between a

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 17

home address and a business address, a domestic address and a foreign address, or various
types of financial awards.

Essentially, there are two methods for representing these semantics in XML: 1) by defining a
unique element for each variation on a general type – e.g., ShippingAddress, MailingAddress,
etc. could all be child elements of a Person element or complex type, the structure of each being
defined by a single AddressType complex type – and 2) by defining a generic complex element
that has, as a child, a “type” element or attribute that indicates context or usage and, if
necessary, constraining the element or attribute by an enumerated list of acceptable values – e.g.
include a Type attribute as part of the AddressType complex type, which has an enumerated list
of values like Home, Work, etc.

Both of these methods are valid and advantageous in specific situations. Defining unique
elements, for example, tightly constrains the schema, allowing business rules to be validated by
the parser. The advantage of the second method is a generic and flexible structure that can be
used in a number of instances.

Since each of these methods has its place, knowing when to employ the proper technique is
largely a modeling decision requiring thorough analysis to understand the business use of the
element(s). Specifically, modelers should consider whether or not the similar elements have
structural differences or differences in data requirements between them and the business
semantics of the element(s) vis-à-vis the parent element.

These points are covered in more detail in the sections that follow. Included are guidelines
regarding which XML technique to employ based on specific requirements.

Elements with Structural Differences
When similar objects have structural differences, preference should be given to defining each
object separately. The rationale for this approach is that they are separate entities despite some
common elements or usage. From an object-oriented perspective, these may be subclasses of a
common super class, or they may be separate classes that implement the same interface. In
either case, they are separate classes that should be modeled as such.

In the financial aid domain, for example, a student could be applying for multiple financial aid
awards. Since each of these awards has its own data requirements and processing logic, each is
modeled as a separate child element, as the following XML representation reflects.

<xsd:element name="Student" type="StudentType"/>

<xsd:complexType name="StudentType">

<xsd:sequence>
<xsd:element name="DLAwardSub" type=" DLAwardSubType"
minOccurs="0"/>
<xsd:element name="DLAwardPLUS" type=" DLAwardPLUSType"
minOccurs="0"/>
<xsd:element name="PellAward" type=" PellAwardType"
minOccurs="0"/>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 18

<xsd:element name="CampusBasedAward" type=" CampusBasedAward
Type"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

Understand Child Element Semantics
Child elements should be defined in a manner that preserves their business semantics vis-à-vis
their parent element. For example, while all addresses are essentially the same from a
conceptual and structural standpoint, when defined as a child of another element, such as a
student or a loan guarantor, an address may acquire additional semantics that must be
captured. Understanding how the child element relates to its parent, both structurally and
within the context of a business transaction, will help in determining what additional
information, if any, needs to be captured, as well as the proper XML modeling technique to
employ.

Tightly Constrained Relationships
If the relationship between a child element and its parent needs to be constrained in terms of
cardinality or to enforce business rules, explicit child elements should be used whose names
convey the nature of the relationship.

For example, suppose that a Business may have multiple addresses, but that each address is
always either a Billing Address, a Shipping Address, or a Mailing Address. Furthermore,
suppose that a Mailing Address is always required.

This can be represented most accurately and efficiently with 3 separate child elements of
Business – MailingAddress, BillingAddress, and ShippingAddress – each of which is of type
AddressType, as reflected below.

<xsd:element name="Business" type="BusinessType"/>

<xsd:complexType name="BusinessType">

<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="MailingAddress" type="AddressType"/>
<xsd:element name="BillingAddress" type="AddressType"
minOccurs="0"/>
<xsd:element name="ShippingAddress" type="AddressType"
minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AddressType">

<xsd:sequence>
<xsd:element name="Street" type="xsd:string" maxOccurs="3"/>
<xsd:element name="City" type="xsd:string"/>
<xsd:element name="State" type="xsd:string"/>
<xsd:element name="PostalCode" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 19

This representation is superior to having a single repeatable Address element that includes a
“type” element since the context or use of each address is clearly indicated. Furthermore, the
business rule that at least one MailingAddress is required for a business can be constrained in
the schema. Reusability of the address structure is still accomplished through the use of a
complex type that is used for each named element.

Conveying Ancillary Information
If the data that a child element conveys primarily refers to usage, description, or other ancillary
information that does not alter the basic relationship of the element to its parent, a child, “type”
element, constrained by an enumeration of acceptable values, should be used.

For example, suppose that a Person may have multiple addresses, exactly as the Business in the
example above. In addition, a requirement exists that the schema capture whether the address is
a business or personal address. Suppose further that this distinction does not alter the
relationship of the address to the person from the standpoint of the schema designer – i.e. an
address still will be a MailingAddress, ShippingAddress, or BillingAddress, and whether each
address is personal or business is merely ancillary information. Given these requirements, the
AddressType complex type could be enhanced to include a Type element (or attribute) that
would be constrained by an enumerated list of values indicating whether the address was
Personal or Business.

3.5 Use of Elements vs. Attributes
Deciding whether to model information using an element or an attribute is difficult. No
universal rule exists and the debate often takes on esoteric rather than technical overtones.
Nevertheless, there are a number of facts about attributes and elements that must be considered
in the decision-making process:

• Attributes cannot contain any complex structures, and therefore are not extendable. As
a result, if a concept that holds a simple element becomes more complex, it must be
remodeled as an element.

• Attributes cannot be repeated under an element. If the data under an element repeats,
such as address lines under a street address, an attribute cannot be used.

• Attributes can only be declared as required or optional. Elements not only can be
declared as required or optional, they can also be part of more expressive constructions.
For example, they can be given cardinality constraints (minOccurs and maxOccurs), be
part of a choice group, or be part of a substitution group.

For these reasons, elements should be used in the design of PESC Standards Forum schemas in
the majority of circumstances; especially since these schemas are oriented towards data
exchange. Institutions need a form of exchange that can be understood by computers and
humans alike, which elements, with their ability to reflect hierarchical structure, order, and
cardinality, more readily provide.

Attributes may be used to capture information that describes an element but is not a constituent
part of that element. Used in this manner, attributes capture metadata – information that
describes an element, such as a ID numbers, URLs, types, and other references.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 20

The following guidelines have been compiled from works by Eliot Kimber and C. M. Sperberg-
McQueen in order to assist in determining when to use an element and when to use an
attribute.

1. Determine if the data in question is fundamentally metadata or content.
Metadata is information that describes the container while content is the
information the container conveys.

a. Use an embedded element when the information you are recording is a
constituent part of the parent element.

b. Use an attribute when the information is inherent to the parent but not a
constituent part (one’s head and one’s height are both inherent to a
human being, but one’s head is a constituent part and one’s height isn’t –
you can cut off a person’s head, but not their height).

2. Determine the structural requirements for the data: does the data item
syntactically conform to the rules for attributes or does it require more
structuring?

a. Use embedded elements for complex structure validation.

b. Use attributes for simple data type validation.

3. Determine how the data is intended to be used – i.e. primarily for the conveyance
of domain information or for the processing of information.

a. Use elements to capture domain information since they can have
substructures, order, and are more readily extensible.

b. Use attributes for data processing information such as IDs or “key” data
since they can be easily located and processed.

4. Use attributes to stress the one-to-one relationship among pieces of information,
i.e., to stress that the element represents a tuple of information.

To illustrate the recommended use of elements and attributes, consider a student for which an
id, name, and email address must be captured.

This information could be modeled using either:

• all Elements (see Example-1A.xsd and Example-1A.xml)
• all Attributes (see Example-1B.xsd and Example-1B.xml)
• a combination of the two (see Example-2.xsd and Example-2.xml)

While all of these capture the same information, the structure used in the last method is
preferred since it incorporates several of the guidelines listed above.

The student’s name and email address are treated as content – “information the container
conveys” – since this is the domain information to be captured and communicated. Both are
modeled as child elements, providing a logical, extensible structure. The NameType, for
example, only contains a FirstName element. This could later be expanded to include LastName

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 21

and MiddleName elements as well as attributes that capture metadata about the name – e.g.
whether or not the name is preferred, the name type, such as legal name, maiden name, etc.

The id, on the other hand, is modeled as an attribute since, in this example, at least, it is
considered “key” data; making it more important for data processing than for conveying
information about the student.

Example-1A.xsd - (Use of Elements vs. Attributes)
<?xml version=”1.0”?>
<xsd:schema
 targetNamespace=”urn:org:pesc:sector:example1A”
 xmlns:Example-1A=”urn:org:pesc:sector:example1A”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 elementFormDefault=”unqualified”
 attributeFormDefault=”unqualified”>
 <xsd:element name=”Student” type=”Example-1A:StudentType”/>
 <xsd:complexType name=”StudentType”>
 <xsd:sequence>
 <xsd:element name=”ID” type=”xsd:string”/>
 <xsd:element name=”Name” type=”xsd:string”/>
 <xsd:element name=”Email” type=”xsd:string”/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Example-1A.xml – (Use of Elements vs. Attributes)
<?xml version=”1.0”?>
<Example-1A:Student
 xmlns:Example-1A=”urn:org:pesc:sector:example1A”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”urn:org:pesc:sector:example1A Example-1A.xsd”>
 <ID>9906789</ID>
 <Name>Adam</Name>
 <Email>adam@smplu.edu</Email>
</Example-1A:Student>

Example-1B.xsd – (Use of Elements vs. Attributes)
<?xml version=”1.0”?>
<xsd:schema
 targetNamespace=”urn:org:pesc:sector:example1B”
 xmlns:Example-1B=”urn:org:pesc:sector:example1B”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 elementFormDefault=”unqualified”
 attributeFormDefault=”unqualified”>
 <xsd:element name=”Student” type=”Example-1B:StudentType”/>
 <xsd:complexType name=”StudentType”>
 <xsd:attribute name=”id” type=”xsd:string” use=”required”/>
 <xsd:attribute name=”name” type=”xsd:string” use=”required”/>
 <xsd:attribute name=”email” type=”xsd:string” use=”required”/>
 </xsd:complexType>
</xsd:schema>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
mailto:<Email>adam@smplu.edu</Email>
http://www.w3.org/2001/XMLSchema

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 22

Example-1B.xml – (Use of Elements vs. Attributes)
<?xml version=”1.0”?>
<Example-1B:Student
 id=”9906789”
 name=”Adam”
 email=”adam@smplu.edu”
 xmlns:Example-1B=”urn:org:pesc:sector:example1B”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”urn:org:pesc:sector:example1B Example-1B.xsd"/>

Example-2.xsd – (Use of Elements vs. Attributes)
<?xml version=”1.0”?>
<xsd:schema
 targetNamespace=”urn:org:pesc:sector:example2”
 xmlns:Example-2=”urn:org:pesc:sector:example2”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 elementFormDefault=”unqualified”
 attributeFormDefault=”unqualified”>
 <xsd:element name=”Student” type=”Example-2:StudentType”/>
 <xsd:complexType name=”StudentType”>
 <xsd:sequence>
 <xsd:element name=”Name” type=”xsd:string”/>
 <xsd:element name=”Email” type=”xsd:string”/>
 </xsd:sequence>
 <xsd:attribute name=”id” type=”xsd:string” use=”required”/>
 </xsd:complexType>
</xsd:schema>

Example-2.xml – (Use of Elements vs. Attributes)
<?xml version=”1.0”?>
<Example-2:Student
 id=”9906789”
 xmlns:Example-2=”urn:org:pesc:sector:example2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:org:pesc:sector:example2 Example-2.xsd">
 <Name>Adam</Name>
 <Email>adam@smplu.edu</Email>
</Example-2:Student>

Another instance where attributes can and should be used is as an index for each item of a list of
items. The name of the attribute in this case should almost always logically follow to be the
word “Number”.

The criteria for when to use the “Number” attribute would be:

• There is a group of items that naturally fall into an ordered list. That is, a group of
similar items is not enough; these items also have an order to them.

mailto:adam@smplu.edu
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
mailto:<Email>adam@smplu.edu</Email>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 23

• The list can conceptually be represented with only some of the members present. That
is, the first and third items might usefully be sent without the second. For this reason,
the position in the list would not alone be enough to distinguish the index of each item.

An example of an improper use of the “Number” attribute is address lines. In an address, often
one may include more than one AddressLine sub-element to fully list the address. However,
the second AddressLine can really not logically exist without the first AddressLine. Therefore,
it is not necessary to tag each line with a “Number” attribute:

<Address>
 <AddressLine>10 Main Street</AddressLine>
 <AddressLine>Apt 202</AddressLine> <!--No need for Number attribute-->
 <!-- Other address fields -->
</Address>

An example for the proper use of the “Number” attribute is a set of disbursements for loans. In
a list of disbursements, an attribute of Number helps identify each disbursement block. Note
that the attribute allows the listing of disbursements 1 and 3 without including 2.

<Disbursement Number=”1”>
... <!-- Disbursement Data -->
</Disbursement>
<Disbursement Number=”3”>
... <!-- Disbursement Data -->
</Disbursement>

3.6 Object – Oriented Design

Subclassing and Composition
When building aggregate objects, there are several methods that can be followed. One option is
called Subclassing. This design methodology builds a hierarchy of type definitions that creates
an aggregate object. The second option is called Composition. This methodology combines
objects into an aggregate object by referencing groups of objects.

In order to explain the differences between these two methods, consider how one would want
to model Pell Grants, Unsubsidized Direct Loans, PLUS Loans, and Subsidized Stafford Loans.
Assume that these award types have some commonly shared elements.

Design by Subclassing
The Subclassing method would require a Schema designer to create a base FinancialAwardType
that could be defined for all shared elements. Then the Schema designer would have to extend
that FinancialAwardType to create a PellType. This new type would include any Pell Grant
specific objects. The Schema designer would also have to extend FinancialAwardType to create
a DLType to include any Direct Loan specific objects. Finally, the Schema designer would have
to extend the DLType to include any specific objects for each of the three Direct Loan types
(DLPLUSType, DLSubsidizedType, and DLUnsubsidizedType). The figure below illustrates
this example.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 24

Figure 3.1 – Design by Subclassing Diagram

Example Subclassing Schema Snippet
<xs:complexType name="FinancialAwardType">
...
</xs:complexType>

<xs:complexType name=”LoanType”>
 <xs:extension base=”FinancialAwardType”>
 ...
 </xs:extension>
</xs:complexType>

<xs:complexType name=”PLUSType”>
 <xs:extension base=”LoanType”>
 ...
 </xs:extension>
</xs:complexType>

The difficulty with this technique for assembling complex types is that an individual who is
trying to understand a PLUS Loan, needs to understand the LoanType, and the
FinancialAwardType. While this is possible to do, it can become difficult as the number of
levels of inheritance increases. Another problem with this method is that a Schema designer
may make a change to the FinancialAwardType, and not realize how those changes have
downstream ramifications on all of the types which inherit from FinancialAwardType both
directly and indirectly.

Design by Composition
The Composition method does not rely on this inheritance hierarchy to create complex types. It
relies on the referencing of groups of elements. Instead of a PLUS Direct Loan being a Direct
Loan, the PLUS Direct Loan uses the elements from the Direct Loan Group of elements. The
Direct Loan Group of elements uses the elements form the Financial Award Group of elements.

Financial Award

Loan Pell Grant

Subsidized
Stafford

Loan

PLUS
Loan

Unsubsidized
Direct Loan

Is a Is a

Is a Is a Is a

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 25

Figure 3.2 – Design by Composition Diagram

Example Subclassing Schema Snippet
<xs:group name="FinancialAwardGroup">
 <xs:sequence>
 ...
 </xs:sequence>
</xs:group>

<xs:group name=”LoanGroup”>
 <xs:sequence>
 ...
 </xs:sequence>
</xs:group>

<xs:complexType name=”PLUSType”>
 <xs:sequence>
 <xs:element name=”PLUSElement1” type=”xs:string”/>
 <xs:group ref=”FinancialAwardGroup”/>
 <xs:group ref=”LoanGroup”/>
 <xs:element name=”PLUSElement2” type=”xs:string”/>
 </xs:sequence>
</xs:complexType>

There are several advantages for designing Schemas by composition. The first is that elements
can be included in any order. For example, in the subclassing design pattern, when PLUS base
extends LoanType, the elements from the LoanType complex type must be the first elements in
the PLUS complex type. However, when including a group of elements, the group of elements
can be referenced anywhere in the type definition. In addition, Schema designers can reference
more than one group, as opposed to only being able to extend one type. This gives Schema
designers greater flexibility with regard to how aggregate objects will be formed. The second is
that the composition design pattern creates loose collections of elements that can be changed
with fewer downstream considerations.

PLUS Loan
 Financial

Award
Elements

 Loan
Elements

Subsidized Stafford Loan
 Financial

Award
Elements

Loan
Elements

Unsubsidized Direct Loan
 Financial

Award
Elements

Loan
Elements

Pell Grant
 Financial

Award
Elements

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 26

Derivations

Derivation by Extension
XML allows Schema designers to do more than simply reuse types and elements. It allows
users to extend them. This is call derivation by extension. For example, a Schema designer can
take a base type and add an additional element to a new type. This technique facilitates the
reuse of type definitions. Assume that a Schema designer had specifications that required one
object type identical to the “MovieType” example, and another object type that also had an
element to store the language of the Movie.

MovieType Example
<xsd:complexType name=”MovieType”>

<xsd:sequence>
<xsd:element name="Title" type=”xsd:string”/>
<xsd:element name="Director" type=”xsd:string”/>
<xsd:element name="Genre" type=”xsd:string”/>
<xsd:element name="ReleaseYear" type=”xsd:gYear”/>

</xsd:sequence>
</xsd:complexType>

In order to derive by extension, a Schema designer would take a base type and extend it with
whatever additional elements are necessary. As the example instance snippet shows, any new
elements would be placed after all of the elements from the base type.

Example Derivation by Extension
<xsd:complexType name=”MovieLanguageType”>

<xsd:extension base=”MovieType”>
<xsd:sequence>

<xsd:element name="Language" type=”xsd:string”/>
</xsd:sequence>

</xsd:extension>
</xsd:complexType>

Example Instance Snippet for Derivation by Extension
<Movie>

<Title>Movie’s Title</Title>
<Director>Joe Smith</Director>
<Genre>Action</Genre>
<ReleaseYear>2003</ReleaseYear>
<Language>English</Language>

</Movie>

Derivation by Restriction
XML also provides for a technique that allows Schema designers the ability to limit a particular
data definition. In the phone number example, the string datatype was restricted down to a
pattern that only allowed a valid phone number format to be included in that tag.

Example Derivation by Restriction

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 27

<xsd:element name=”PhoneNumber”>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-\d{3}-\d{4}"/>
 </xsd:restriction>
</xsd:simpleType>
</xsd:elemnt>

This technique can also be applied to Complex Types. In the modified MovieType, the element
title can be included an unlimited number of times (remember that the default for minOccurs
and max Occurs is one for both). Also the Genre element is listed as optional.

Modified MovieType Example
<xsd:complexType name=”MovieType”>
<xsd:sequence>
 <xsd:element name="Title" type=”xsd:string”
 maxOccurs=”unbounded”/>
 <xsd:element name="Director" type=”xsd:string”/>
 <xsd:element name="Genre" type=”xsd:string” minOccurs=”0”/>
 <xsd:element name="ReleaseYear" type=”xsd:gYear”/>
</xsd:sequence>
</xsd:complexType>

The following example restricts the modified MoveType so that the “Title” element can only be
included once, and it removes the “Genre” element completely.

Example Derivation by Restriction ComplexType
<xsd:complexType name=”MovieOneTitleNoGenreType”>
 <xsd:complexContent>
 <xsd:restriction base=”MovieType”>
 <xsd:sequence>
 <xsd:element name="Title" type=”xsd:string”/>
 <xsd:element name="Director" type=”xsd:string”/>
 <xsd:element name="ReleaseYear" type=”xsd:gYear”/>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
</xsd:complexType>

Extension by restriction allows a Schema designer to limit the number of occurrences of an
element, and remove optional elements. This technique is limited when used with complex
types because it requires a Schema designer to list elements over again. Because of this
redundancy, PESC schema designers should not use derivation by restriction when creating
complex types.

Limiting Derivations
Schema designers can also limit the ability to derive by restriction, derive by extension, or to
derive by either restriction or extension.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 28

The following example creates a complex type which can not be used in a derivation by
restriction.

Limit Restriction
<xsd:complexType name="MovieType" type=”xsd:string” final="restriction">

The following example creates a complex type which can not be used in a derivation by
extension.

Limit Extension
<xsd:complexType name="MovieType" type=”xsd:string” final="extension">

The following example creates a complex type which can not be used in a derivation by any
method.

Limit Extension and Restriction
<xsd:complexType name="MovieType" type=”xsd:string” final="#all">

Redefines
The Standards Forum should not use the redefine option when defining its schemas. A
schema redefine operation performs an implicit include operation. All of the components
in the schema that are the object of the redefine are included in the schema performing the
redefine. However, redefine takes things farther than include by allowing the schema
performing the redefine to extend or restrict components in the redefined schema. Most likely
this will not be necessary for the generic PESC definitions.

Use of redefine, however, might be advantageous for use by an organization that has
additional requirements for a data item which fall outside the requirements defined in the PESC
Schema. Like include, redefine can be used for any schema that does not have a
targetNamespace. This allows an entity to redefine (i.e., include) a PESC component
schema, but modify that schema with its own extensions/requirements.

3.7 Flexible Architectures
There are several techniques Schema designers can employ to make XML Schemas more
flexible. The following techniques will be demonstrated in this section:

• Choice Groups
• Substitution Groups
• Abstract Types with Type Substitution

Choice Groups
In most of the previous Schema snippets complex types were built using a “sequence” of
elements. It is also possible to build a complex type using “choice”.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 29

Choice Groups Schema Snippet
<xsd:complexType name=”MovieType”>

<xsd:choice>
<xsd:element name="Title" type=”xsd:string”/>
<xsd:element name="Director" type=”xsd:string”/>
<xsd:element name="Genre" type=”xsd:string”/>
<xsd:element name="ReleaseYear" type=”xsd:gYear”/>

</xsd:choice>
</xsd:complexType>

The default for choice is that it contains one and only one of the elements included within a
choice block. This means that only one “Title”, or one “Director”, or one “Genre”, or one
“ReleaseYear” element could be included under an element based on the “MovieType”.
However the defaults can be overridden.

Choice Groups Defaults Overridden Schema Snippet
<xsd:complexType name=”MovieType”>

<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element name="Title" type=”xsd:string”/>
<xsd:element name="Director" type=”xsd:string”/>
<xsd:element name="Genre" type=”xsd:string”/>
<xsd:element name="ReleaseYear" type=”xsd:gYear”/>

</xsd:choice>
</xsd:complexType>

This example would allow any number of the elements included with in the choice group to be
included under an element based on the “MovieType”.

There are two considerations that Schema designers need to remember when choosing to use
“choice”. These considerations will be contrasted with Substitution Groups.

• Central location of all valid elements means that the addition or removal of an element
from a choice group will require an update to that choice group.

• Central location of all valid elements makes Schema documents easier to understand.

Substitution Groups
A Substitution Group allows a Schema designer to declare one element and use that element
throughout a Schema. This is referred to as Element Substitution. Then a Schema designer can
create an additional element that is in a substitution group with the original element. This
allows the second element to substitute for the first element anywhere the first element is used.

Substitution Group Schema Snippet
<xsd:element name=”Genre” type=”xsd:string”/>
<xsd:element name=”Category” substitutionGroup=”Genre” type=”xsd:string”/>
<xsd:element name="Movie">

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”Title” type”xsd:string”/>
<xsd:element ref="Genre"/>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 30

</xsd:sequence>
/xsd:complexType>

</xsd:element>

Substitution Group Instance Snippet #1
<Movie>

<Title>Movie’s Title</Title>
<Genre>Action</Genre>

</Movie>

Substitution Group Instance Snippet #2
<Movie>

<Title>Movie’s Title</Title>
<Category>Action</Category>

</Movie>

Because of the creation of the substitution group, both of the Instance Snippets are valid
according to the Substitution Group Schema Snippet. In this example “Genre” is called the
Head Element, and “Category” is declared to be an element that can replace “Genre”. It is
important to note that an element only be in a substitution group with a head element, if the
element joining a substitution group is of the same type as the head element, or derived from
the same element as the derived type.

Schema designers also have the option to block Element Substitution.

Limit Element Substitution
<xsd:element name=”Genre” type=”xsd:string” block=”substitution”/>

There are two considerations that Schema designers need to remember when choosing to use
Substitution Groups.

• Decentralized location of all valid elements allows for the addition or removal of a valid
element without the remaining valid elements.

• Decentralized location of all valid elements makes Schema documents more difficult to
understand.

Abstract Type and Type Substitution
Schema designers also have the ability to create an abstract complex type. Abstract complex
types can be extended or restricted in the same manner as any non-abstract complex type can be
extended or restricted. However, when an abstract complex type is included in another
complex type, an instance document can include any non-abstract complex type that is based
off of the original abstract complex type. The following example shows how to implement this.

Abstract Type and Type Substitution Snippet
 <xs:complexType name="AudioVisualType" abstract="true">
 <xs:sequence>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 31

 <xs:element name="Title" type="xs:string"/>
 <xs:element name="Director" type="xs:string"/>
 <xs:element name="Genre" type="xs:string"/>
 <xs:element name="ReleaseYear" type="xs:gYear"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="MovieType">
 <xs:complexContent>
 <xs:extension base="AudioVisualType"/>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="TelevisionType">
 <xs:complexContent>
 <xs:extension base="AudioVisualType">
 <xs:sequence>
 <xs:element name="Season" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="AudioVisualLibrary">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AudioVisual" type="AudioVisualType"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Abstract Type and Type Substitution Instance Snippet
<AudioVisualLibrary>
 <AudioVisual xsi:type=”TelevisionType”>
 <Title>Show’s Title</Title>
 <Director>Joe Wilson</Director>
 <Genre>Comedy</Genre>
 <ReleaseYear>2002</ReleaseYear>
 <Season>3</Season>
 </AudioVisual>
 <AudioVisual xsi:type=”MovieType”>
 <Title>Movie’s Title</Title>
 <Director>Joe Smith</Director>
 <Genre>Action</Genre>
 <ReleaseYear>2003</ReleaseYear>
 </AudioVisual>
</AudioVisualLibrary>

In this example the abstract type “AudioVisualType” is substituted for by the “TelevisionType”
and the “MovieType”. This method produces awkward implementation documents, because
the “AudioVisual” element needs to have an attribute to qualify what type of non-abstract
complex type will be used. The fact that the Schema implementer must qualify the element
with an attribute describing the element type places an unnecessary burden on the XML
implementer; hence, this method is not recommended for PESC use.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 32

3.8 Null Values vs. Empty Strings
XML allows for three different types of non-value data submission. Application teams need to
decide how to handle each of these scenarios, with either or both application logic and default
values. However, there are some suggestions for how to handle each type of non-value data.

• Absent Element – Make no change to the target system’s stored value.
• Empty Element – Change the target system’s stored value to “Blank”.
• Nil Element – Change the target system’s stored value to “Null”.

The following Schema will be used to demonstrate each of these scenarios.

Example Absent, Empty and Nillable Schema Snippet
<xsd:element name=”X”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Y" type="xsd:string" nillable="true"
minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

This Schema allows for the following Instance Documents

Example Instance Snippet
<X><Y>Data</Y></X>

Example Absent Instance Snippet
<X></X>

Example Empty Instance Snippet
<X></Y></X> or <X><Y></Y></X> or <X><Y> </Y></X>

Example Nillable Instance Snippet
<X><Y xsi:nill=”true”></X>

3.9 Enumerations and Code Lists
When modeling data in XML, there are occasions when the value of an element or attribute can
be constrained to a finite list. Several approaches to capturing and conveying this information
can be applied:

• The list of values may be captured as an enumeration within a defined simple type;
• The list of values may be encoded and subsequently captured as an enumeration within

a defined simple type;
• The list of values simply may be documented without implementation in XML Schema.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 33

Regardless of the approach, schema designers will need to create the code list themselves or,
preferably, base it on a pre-existing code list2.

The following guidelines apply to the development and deployment of code lists:

• For any code list that is created and maintained by the Standards Forum, permitted
values should be listed in the data dictionary and as documentation in document
schemas.

• The code list may be implemented as an enumeration in a defined simple type –
providing for the validation of codes within the schema itself – if the permitted values in
the list change infrequently. In general, implementations should not be delayed by
administrative and procedural delays in adding codes to schemas. If the potential for
such delays exist due to the volatility of the code list, enumerations within a simple type
should not be used and business applications should be expected to perform their own
code value checking.

• For code lists that are created and maintained by organizations other than the Standards
Forum, the Forum should determine whether or not schema validation is to be
supported. The team should make this decision based on factors such as the stability of
the code list, size of the code list, and copyright status. Schemas should not import or
include schemas from other organizations for the purpose of code list validation.

Each Code List is made up of Code List Items, each of which has a name and a definition. The
Code List Item Name will be the value referenced in the code list. The following conventions
should be used when developing Code List Item Names.

• The Code List Item Name shall be unique within the Code List.
• The Code List Item Name should be extracted from the Code List Item Definition.
• Code List Item Names are case sensitive. The first letter of each concatenated word should

be in uppercase, and the rest of the letters should be lowercase.
• The Code List Item Name shall be concise and shall not contain redundant words.
• The Code List Item Name shall be in singular form unless the concept itself is plural.
• The Code List Item Name shall not use non-letter characters unless required by language

rules.
• The Code List Item Name shall only contain verbs, nouns and adjectives (i.e. no words like

and, of, the, etc.). This rule shall be applied to the English language, and may be applied
to other languages as appropriate.

• Abbreviations and acronyms that are part of the Code List Item Name shall be expanded
or explained in the definition. Abbreviations shall only be used if commonly known
and context is not lost.

2 The term “code list” is used throughout despite the fact that one- or two-word literal values are
preferred to actual codes.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 34

• Code List Item Names should be made up of whole words or industry-recognized
fragments when text values are of reasonable length and are common to all participants.
This same approach has been adopted by the Association of Retail Technology
Standards (ARTS) .

• If a Code List Item Name can not be simplified to 3 words, schema designers may consider
using short, two or three character codes as Code List Item Names.

In the following example, a code list is created by creating an enumerated list of valid values.
The valid values are Code List Item Names. Each of the Code List Items will also need to have a
matching definition

Enumeration Example
<xsd:element name="Genre">
 <xsd:simpleType>
 <xsd:restriction base="xsd:GenreType"/>
 </xsd:simpleType>
</xsd:element>

<xsd:simpleType name="GenreType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Action"/>
 <xsd:enumeration value="Comedy"/>
 <xsd:enumeration value="Drama"/>
 <xsd:enumeration value="Mystery"/>
 </xsd:restriction>
</xsd:simpleType>

The following example demonstrates how a Schema designer can create a Code List based on
the union of two sets of enumerated values. XML allows Schema designers to combine multiple
Code Lists into one Code List. This is accomplished by creating a type that is a “union” of two
of more existing types. In this example the “Genre” element would have the following valid
values:

• Action
• Comedy
• Drama
• Mystery
• Satire
• BlackComedy
• ScienceFiction

Union Example
<xsd:simpleType name="AlternateGenreType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Satire"/>
 <xsd:enumeration value="BlackComedy"/>
 <xsd:enumeration value="ScienceFiction"/>
 </xsd:restriction>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 35

</xsd:simpleType>

<xsd:element name="Genre">
 <xsd:simpleType>
 <xsd:union memberTypes="xsd:GenreType xsd:AlternateGenreType "/>
 </xsd:simpleType>
</xsd:element>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 36

4 PESC XML Schema Structure
PESC XML Schema Development shall be done in a tiered manner to obtain maximum
reusability. The tiers correspond to the scoping of the elements, from general use across all
systems, to specific use for a particular message. The three tiers for development are:

• Core Component Library
• Sector Library
• Message Specification

These tiers, or levels, are illustrated in the following diagram:

Figure 4.1 – Address Line Core Component Example

The diagram traces the use of a representative data entity, Address, through the levels of the
XML modeling architecture, from its definition as a Core Component (bottom level), through its
refinement (through the addition of context) into a specific component on the Sector Library
Level, to its ultimate inclusion in a Message Specification Schema as part of a Contacts Block.

Origination and Disbursement
Demographics Sector

Sector
Library
File A-1

Contacts

COD Common Record Schema

Student

Schema for
Sector A

Sector B

Schema for
Sector B

C
or

e
C

om
po

ne
nt

 L
ev

el
Se

ct
or

 L
ib

ra
ry

 L
ev

el
S

ch
em

a
Le

ve
l

Demographics
Subject Area

Subject
Area B

Subject
Area C

Subject
Area D

Basic Core
Component
Schema

A ggregate
Core
Component
Schema

Basic Core
Component
Schema

A ggregate
Core
Component
Schema

Basic Core
Component
Schema

Sector
Library
File A-2

SectorLibrar
y
File A-3

Sector
Library
File B-1

Sector
Library
File B-2

Message Type
2

Message Type
1

 Basic Core
 Component
 Schema

 Aggregate
 Core
 Component
 Schema

Address

 City

Address Line

 State Code

Postal Code

Address

Contacts

Address

 Ci ty

Address Line

 State Code

Postal Code

<! --other data-->

< ! --other data-->

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 37

4.1 Naming Conventions

Overview
PESC’s Core Component Naming Convention will be applied to three entities:

• Core Component Dictionary Entry Names
• XML Type Definition Names
• XML Tag Names

Each of these entities will have slight differences in their naming conventions; however they
will be related to each other. The Core Component Dictionary Entry Name and the XML Type
Definition Name will have a naming convention that will ensure each object has a unique name.
XML Tag names will be simpler than the Dictionary Entry Names and XML Type Definition
Names. This is because XML Tags will rely on their own name, and the context of the
Aggregate the XML Tag is located within.

Naming Standards
PESC’s Core Component Naming convention is based on the Core Component naming
convention described in the UNCEFACT Core Component Technical Specification. The
UNCEFACT Core Component Technical Specification’s naming convention is based on the
standards outlined ISO 11179 Part 5 – Naming and Identification Principles for Data Elements.
The Core Component Technical Specification expands upon the ISO 11179 naming convention
standards to include Core Component Types and Business Information Entities.

Core Component Dictionary Entry Name Convention
The name a Core Component is referenced by in the Core Component Dictionary is the Core
Component Dictionary Entry Name. This Dictionary Entry Name is based on the summation of
its named parts.

• Object Class Terms
• Property Terms
• Representation Terms
• Qualifier Terms

Name uniqueness is guaranteed because the name is based on the combination of terms that
make each Core Component Unique.

PESC’s Core Component Naming Convention uses the following rules to produce the
Dictionary Entry Names for Core Components:

• The name of an Object Class shall be unique throughout the dictionary and may consist
of more than one word. The name of a Property Term shall occur naturally in the
definition and may consist of more than one word. A name of a Property Term shall be
unique within the context of an Object Class but may be reused across different Object
Classes.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 38

• If the name of the Property Term uses the same word as the Representation Term (or an
equivalent word), this Property Term shall be removed from Dictionary Entry Name. The
Representation Term word in this case only will remain.

• The name of the Representation Term shall be one of the terms specified in the List of
Representation Terms as included in this document.

• The name of the Representation Term shall not be truncated in the Dictionary Entry Name.
• The Dictionary Entry Name shall be unique.
• The Dictionary Entry Name shall be extracted from the Core Component definition.
• The Dictionary Entry Name shall be concise and shall not contain consecutive redundant

words.
• The Dictionary Entry Name and all its components shall be in singular form unless the

concept itself is plural.
• The Dictionary Entry Name shall not use non-letter characters unless required by

language rules.
• The Dictionary Entry Name shall only contain verbs, nouns and adjectives (i.e. no words

like and, of, the, etc.). This rule shall be applied to the English language, and may be
applied to other languages as appropriate.

• Abbreviations and acronyms that are part of the Dictionary Entry Name shall be
expanded or explained in the definition.

• The Dictionary Entry Name of a Basic Core Component shall consist of the name of an
Object Class, the name of a Property Term and the name of a Representation Term

• The components of a Dictionary Entry Name shall be separated by dots. The space
character shall separate words in multi-word Object Classes and/or multiword Property
Terms. Every word shall start with a capital letter. To allow spell checking of the
Directory Entry Names’ words, the dots after

• Object Class and Property Terms shall be followed by a space character.
• The Dictionary Entry Name of a Core Component Type shall consist of a meaningful type

name followed by a dot, a space character, and the term Type.
• The Dictionary Entry Name of an Aggregate Core Component shall consist of a meaningful

Object Class followed by a dot, a space character, and the term Details. The Object Class
may consist of more than one word.

• If the Object Class of a Core Component is Global, this Object Class is not included in the
Dictionary Entry Name.

For example, if a Basic Core Component had the Object Class of “Person” and the Property
Term of “Birth Date”, then the Core Component Dictionary Entry Name would be
“Person. Birth Date”.

XML Types and XML Tags
Since PESC’s XML Schemas will be based on Core Components, schema designers will be using
types that have been previously defined. Both XML Type Definitions and XML Tag Definitions
have names. PESC has a set of standards for creating both types of names from the Core
Component Dictionary Entry Name. The following example shows the definition of an XML
Type and an XML Tag which is based on the defined XML Type for the “Person. Birth Date”
Core Component.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 39

Example XML Type Definition
<xsd:simpleType name=”PersonBirthDateType“>

<xsd:restriction base="xsd:date"/>
</xsd:simpleType>

Example XML Tag Definition
<xsd:element name="BirthDate" type="PersonBirthDateType"/>

Please note the following information on XML Tag Names and XML Type Definition Names:

• XML Tag Names and XML Type Definition Names are case sensitive. The first letter of
each concatenated word should be in uppercase, and the rest of the letters should be
lowercase.

• Length should be considered when creating these names (especially for XML Tag
Names), but not to the point of sacrificing context. Well known abbreviations and
acronyms may be used, but only if commonly known and context is not lost.

• Representation terms are not necessary in XML Tag Names or XML Type Definition
Names, if the representation term for a specific Core Component is not one of the
following:

o Date
o Indicator
o Code

XML Type Definition Name Convention
During the creation of a Core Component, an XML type definition is created. This type
definition is the XML representation of a Core Component. The name of this XML type
definition is based on the Dictionary Entry Name. Three steps need to occur to create an XML
Type Definition Name out of a Core Component Dictionary Entry Name.

1. Remove Space Characters and Dots from the Dictionary Entry Name.
2. If the Representation Term is anything other than Date, Code, or Indicator, remove the

Representation Term from the modified Dictionary Entry Name.
3. Add the following characters to the end of the modified Dictionary Entry Name “Type”.

For example, if a Core Component Dictionary Entry Name was “Person. Birth Date”, then the
XML Type Definition would be “PersonBirthDateType”.

XML Tag Name Convention
When designing an XML Schema, XML Type Definitions are given XML Tag Names. This tag
name will provide the description of the data stored in an XML Document. It is critical that this
name, as with the other names, be descriptive and concise. Abbreviations and acronyms may
be used in XML Tag Names only if the abbreviation or acronyms is commonly known and
context is not lost. The use of an abbreviation or acronym should not limit the descriptiveness

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 40

of a tag name. There are two steps that need to happen to create a XML Tag Name out of a
XML Type Definition Name.

1. Remove the characters “Type” from the end of the XML Type Definition Name.
2. If the XML Tag is going to be used within an Aggregate, then the Object Class can be

removed from the front of the modified XML Type Definition Name. This can be done
because the context for this element can be found from the Aggregate itself.

For example, if an XML Type Definition Name was “PersonBirthDateType”, and the XML Tag
is going to be used in a Student Block, then the XML Tag Name would be “BirthDate”.

Schema Document Root Element Naming Convention
Schema document names (the root element of a schema) should be based on the business
purpose of the document.

Example Application of Naming Convention
The following table shows an additional example of how Core Component metadata is
combined to form a Dictionary Entry Name, an XML Type Definition Name, and an XML Tag
Name.

Metadata Field Metadata Value
Object Class Address
Property Term City
Representation Term Text
Core Component
Dictionary Entry Name

Address. City.
Text

XML Type Name AddressCityType
XML Tag Name City

Table 4.1 – Example Application of Naming Convention

4.2 Namespace Conventions

Description
According to the World Wide Web Consortium (W3C), the purpose of XML namespaces is to
“provide a simple method for qualifying element and attribute names used in Extensible
Markup Language documents by associating them with namespaces identified in Uniform
Resource Identifiers (URI) references.”

In other words, XML Namespaces allow an organization to group their element names and
attribute names in such a way to prevent conflicts in like named elements and attributes. This is
done to manage element names and attribute names within a single organization and between
multiple organizations.

PESC has developed an approach for the namespaces it will use, and it is defined in the
following section.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 41

Naming of Namespaces
The general approach for PESC namespaces is based on the guidelines in XML.gov, as well as
the ASC X12 Reference Model for XML Design. The root of all namespaces PESC will use in its
XML Libraries will begin with the organizational identifier:

urn:org:pesc:
After the organizational identifier, additional terms will be used to indicate the node of the
classification scheme under which the document falls.

The terms for XML Namespaces are defined in accordance with the standard PESC XML
Classification System outlined in Section 4.2. The last part of the namespace consists of the
version indicator, as outlined in Section 4.3 The entire Core Component library namespace
structure, along with a base version of 1.0.0, is listed as follows:

I. Entity
§ Address and Contact

• urn:org:pesc:core:organization-demographic:v1.0.0
II. Person

§ Identification
• urn:org:pesc:core:person-identification:v1.0.0

§ Demographics
• urn:org:pesc:core:person-demographic:v1.0.0

§ Financial
• urn:org:pesc:core:person-financial:v1.0.0

III. School
§ Demographics

• urn:org:pesc:core:school-demographic:v1.0.0
§ Participation

• urn:org:pesc:core:school-participation:v1.0.0
IV. Financial Partner (FP)

§ Demographics
• urn:org:pesc:core:financialpartner-demographic:v1.0.0

§ Participation
• urn:org:pesc:core:financialpartner-participation:v1.0.0

V. Aid
§ Loans and Grants

• urn:org:pesc:core:aid-loanandgrant:v1.0.0
§ Disbursements

• urn:org:pesc:core:aid-disbursement:v1.0.0

Application of Namespaces

Description
Before discussing namespace usage specifically, consider a situation with four documents:

1. A Base Schema file, holding Core Component Definitions
2. A Sector Library Schema file, holding sector-level XML Schema objects

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 42

3. A Message Specification Schema file, holding the final XML message definition
4. An XML “Instance Document”, holding a file that conforms to the Message Specification

Each of the first three documents contains XML Schema objects, which may be part of different
namespaces. The elements need to be used in the XML Instance Document, with minimal
complexity, but with having their unique locations (through namespace identification)
preserved. This section describes exactly how each XML Schema document should be
constructed to meet these goals.

There are several XML Schema mechanisms that work together to support namespace usage in
XML documents. These mechanisms include:

• Core Component XML Schema:
o Setting the targetNamespace attribute
o Setting the elementFormDefault and attributeFormDefault attributes to indicate

how elements will be qualified in an instance document using this schema
• Sector Library Schema

o Using xs:import or xs:include, as appropriate, to include the Core Component
XML Schema

o Setting the targetNamespace attribute
o Setting the elementFormDefault and attributeFormDefault attributes to indicate

how elements will be qualified in an instance document using this schema
• Message Specification XML Schema

o Using xs:import or xs:include, as appropriate, to include the Sector Library XML
Schema

o Setting the targetNamespace attribute
o Setting the elementFormDefault and attributeFormDefault attributes to indicate

how elements will be qualified in an instance document using this schema
• XML Instance Document

o Setting the xmlns:[prefix] attribute to reference the Message Specification
o Setting the schemaLocation attribute to reference the Message Specification
o Setting the namespace prefix on the elements of the Instance Document

Approach
There are several different ways to use these different settings within a set of
included/including schemas, and the instance document that refers to them. Rather than list all
of the combinations possible, we will focus on the recommended approach for PESC XML
development. The approach is as follows:

• Core Component XML Schema:
o Set the targetNamespace attribute to a value appropriate for the Core

Component Library, such as:

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 43

<xs:schema targetNamespace="urn:org:pesc:core:aid-
loanandgrant:v1.0.0”

o Set the attributes elementFormDefault=“unqualified” and
attributeFormDefault=“unqualified”

• Sector Library Schema
o Use the xs:import directive to import the Core Component XML Schema
o Set the xmlns:[prefix] attribute to reference the Core Component Library
o Set the targetNamespace attribute to a value appropriate for the Sector Library,

such as:
<xs:schema targetNamespace="urn:org:pesc:thissector:v1.0.0”

o Set the attributes elementFormDefault=“unqualified” and
attributeFormDefault=“unqualified”

o Create all element objects in this schema (do not use ones declared in the Core
Component Library) - use only the simpleType and complexType objects from
the Core Component Library, using the namespace prefix to qualify them.

• Message Specification XML Schema
o Use the xs:import directive to import the Sector Library XML Schema
o Set the xmlns:[prefix] attribute to reference the Sector Library
o Set the targetNamespace attribute to a value appropriate for the Message

Specification, such as:
<xs:schema targetNamespace="urn:org:pesc:thismessage:v1.0.0”

o Set the attributes elementFormDefault=“unqualified” and
attributeFormDefault=“unqualified”

o Create all top-level element objects in this schema (do not use ones declared in
the Sector Library) - use only the simpleType and complexType objects from the
Sector Library, using the namespace prefix to qualify them.

• XML Instance Document
o Set the xmlns:[prefix] attribute to reference the Message Specification
o Set the schemaLocation attribute to reference the Message Specification
o Set the namespace prefix on the root element of the Instance Document to the

one set for the xmlns:[prefix] attribute.

This approach will preserve unique traceability of types and elements through the different
layers of the PESC XML Libraries, but require few steps on the part of the Instance Document
authors in order to be compliant. A sample instance document would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<root:RootTagOfDocument xmlns:root="urn:org:pesc:thismessage:v1.0.0"
xmlns:sector="urn:org:pesc:thissector:v1.0.0"
xmlns:core="urn:org:pesc:aid:loangrant:v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:org:pesc:thismessage:v1.0.0 MessageSpec.xsd">
 <DocumentID>2003-08-17T09:30:47-05:00BatchID</DocumentID>
<!-- all other elements do not need to be qualified except for the root --
>
</root:RootTagOfDocument>

http://www.w3.org/2001/XMLSchema-instance

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 44

5 Design Patterns for Core Components
The purpose of component design patterns is to show specific XML Schema coding solutions for
some of the more common data structures that will be needed for XML message specifications.
They are specific pieces of XML code, along with guidelines on usage, that can be directly
implemented in an XML Schema document.

5.1 Entity Identifiers

Description
The Entity Identifiers Design Pattern addresses the issue that many systems have when
communicating an identifier code for a particular entity, for example a school. A school can be
identified according to one of several well-known identification systems, such as the OPEID,
NCHELPID, or the IPEDS number. Each number has its own format, which the Schema should
enforce.

All of these known systems are captured in the Core Component OrganizationIDGroup. It lists
many different types under an xs:group compositor. The group allows for the choice of one and
only one ID element to use for the identifier data. However, a particular message might want to
restrict the list to only use one or two items from the choice group. In that case it would need to
recreate this group in its own sector library with only the choice elements that are relevant.

Code
The following XML Schema code defines the base OrganizationIDGroup:

<xs:group name="OrganizationIDGroup">
 <xs:annotation>
 <xs:documentation>Allowable Entity IDs – Exclusive
choice</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="OPEID" type="core:OPEIDType"/>
 <xs:element name="NCHELPID" type="core:NCHELPIDType"/>
 <xs:element name="IPEDS" type="core:IPEDSType"/>
 <xs:element name="ATP" type="core:ATPType"/>
 <xs:element name="FICE" type="core:FICEType"/>
 <xs:element name="ACT" type="core:ACTType"/>
 <xs:element name="CCD" type="core:CCDType"/>
 <xs:element name="CEEBACT" type="core:CEEBACTType"/>
 <xs:element name="CSIS" type="core:CSISType"/>
 <xs:element name="USIS" type="core:USISType"/>
 <xs:element name="ESIS" type="core:ESISType"/>
 <xs:element name="DUNS" type="core:ESISType"/>
 </xs:choice>
</xs:group>

These are the base type definitions for some of the OrganizationID types:

 <xs:simpleType name="OPEIDType">
 <xs:annotation>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 45

 <xs:documentation>The unique identifier assigned by the Office
of Postsecondary Education for each data exchange
partner.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="8"/>
 <xs:maxLength value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="NCHELPIDType">
 <xs:restriction base="xs:string">
 <xs:minLength value="3"/>
 <xs:maxLength value="8"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="IPEDSType">
 <xs:annotation>
 <xs:documentation>The unique identifier assigned by National
Center for Education Statistics for each data exchange
partner.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="6"/>
 <xs:maxLength value="6"/>
 </xs:restriction>
 </xs:simpleType>

The choice group can be restricted by copying the base Core Component definition into a Sector
Library, and then using that group under a particular entity role tag (for example Source):

<xs:element name="Source">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="core:OrganizationIDGroup"/>
 <!—other fields -->
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:group name="OrganizationIDGroup">
 <xs:annotation>
 <xs:documentation>Allowable Entity Ids for this sector - Exclusive
choice</xs:documentation>
 </xs:annotation>
 <xs:choice>
 <xs:element name="OPEID" type="core:OPEIDType"/>
 <xs:element name="NCHELPID" type="core:NCHELPIDType"/>
 </xs:choice>
</xs:group>

Example
The following XML shows a document snipped that conforms to the Schema above:

<Source>
 <OPEID>12345678</OPEID>
</Source>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 46

5.2 Person Identifiers

Description
The Person Identifiers Design Pattern has been developed to support the data requirements of
the systems currently implementing an XML Schema for messages. The concepts for the Person
Identifiers are as follows:

• The Person Identifiers Design Pattern incorporates four fields into a single block, called
Index. The fields are the Social Security Number, Birth Date, First Name, and Last
Name.

• All person-derived entities that serve as the core system data entity should use the
Person Identifiers (Index block). This entity is usually the main Student block.

• Note that the Index block consists of Elements, rather than Attributes. This follows from
the best practice that Elements should almost always be used instead of Attributes,
because they allow for more flexible XML Schema designs.

• Only the SSN element is mandatory in the core pattern Schema for IndexType.
• The IndexType and its sub-elements are true PESC Core Components and are stored as

such in the PESC XML Registry and Repository.

Code
The following is the XML Schema code that defines the Person Identifiers Pattern:

<xs:complexType name="IndexType">
 <xs:annotation>
 <xs:documentation>System identifier or system key</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="SSN" type="core:SSNType"/>
 <xs:element name="BirthDate" type="core:BirthDateType" minOccurs="0"/>
 <xs:element name="LastName" type="core:LastNameType" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

The following code shows a Student object definition that implements the Person Identifiers
Pattern:

<xs:complexType name="PersonType">
 <xs:sequence>
 <xs:element name="Index" type="core:IndexType"/>
 <!—other person data fields -->
</xs:complexType>

Example
The following code illustrates an XML Block for a Student (of PersonType) that conforms to the
XML Schema above:

<Student>
 <Index>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 47

 <SSN>111223333</SSN>
 <BirthDate>1980-01-01</BirthDate>
 <LastName>Smith</LastName>
 </Index>
 <!—other information for the Student -->
</Student>

5.3 User-Defined Extensions

Description
The User-Defined Extension Design Pattern is intended to address situations where an XML
Schema message specification may have to carry sender-specific data that cannot be defined at
the time the message specification is designed. The Schema has to allow for additional elements
to be defined and used at a later date. The User-Defined Extensions Pattern serves as a
placeholder for these to-be-defined fields. However, it can require that these fields are defined
in a Schema by the organization that wants to use the extensions area.

Care should be taken not to use the user-defined extensions as a fall-back for doing appropriate
research and design. It should only be used when in actuality, the organization defining the
base Schema cannot define the additional elements that other organizations may need, and
furthermore, is not interested in the data these other organizations want to exchange in the
user-defined area.

Code
The following is an example of a small XML Schema document that implements a User-Defined
Extensions Pattern:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="urn:org:pesc:extensions-allowed"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:ExtAllow="urn:org:pesc:extensions-allowed"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xs:element name="Document" type="ExtAllow:DocumentType"/>
 <xs:complexType name="DocumentType">
 <xs:sequence>
 <xs:element name="DataField1" type="xs:string"/>
 <xs:element name="DataField2" type="xs:string"/>
 <xs:element name="DataField3" type="xs:string"/>
 <xs:element name="UserDefinedExtensions"
type="ExtAllow:UserDefinedExtensionsType" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="UserDefinedExtensionsType">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

http://www.w3.org/2001/XMLSchema

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 48

A User-Defined Extension is accomplished with the use of the xs: any XML Schema construct.
It allows the inclusion of content in an XML document that is not defined in that document’s
Schema. There are two attributes for this construct to discuss:

• The namespace attribute indicates whether the elements in the user-defined space can be
taken from the original Schema (“##local”), if they have to have been defined in another
Schema (“##other”), or can be taken from anywhere (“##any”). Since the point of
allowing user-defined extensions is that the elements currently aren’t known, “##other”
is a logical choice; it requires the organization extending the Schema to design the
extensions.

• The processContents attribute in the example above can be set to “none”, to do no
Schema validation; “lax”, to do Schema validation if a Schema can be found; and
“strict”, to enforce Schema validation always (fail validation if no Schema is found). The
value “lax” allows validation without bringing things to a halt if for some reason the
Schema can’t be found.

Next, a XML Schema document that defines fields to use in the User-Defined extensions area
follows. Note the different targetNamespace that is defined.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 targetNamespace="urn:org:pesc:useextensions"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:UseExt="urn:org:pesc:useextensions"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified">
 <xs:element name="CustomData" type="UseExt:CustomDataType"/>
 <xs:complexType name="CustomDataType">
 <xs:sequence>
 <xs:element name="ContentString" type="xs:string"/>
 <xs:element name="ContentNumber" type="xs:integer"/>
 <xs:element name="ContentDate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Example
Based on the XML Schema code defined above, a snippet of a sample document would appear
as the following:

<?xml version="1.0" encoding="UTF-8"?>
<ExtAllow:Document
 xmlns:ExtAllow="urn:org:pesc:extensions-allowed"
 xmlns:UseExt="urn:org:pesc:useextensions"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:org:pesc:extensions-allowed
BaseAllowUserDefinedExtensions.xsd urn:org:pesc:useextensions
UserDefinedExtensionsSchema.xsd">
 <DataField1>test1</DataField1>
 <DataField2>test2</DataField2>
 <DataField3>test3</DataField3>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 49

 <UserDefinedExtensions>
 <UseExt:CustomData>
 <ContentString>YourNameHere</ContentString>
 <ContentNumber>6</ContentNumber>
 <ContentDate>2003-01-01</ContentDate>
 </UseExt:CustomData>
 </UserDefinedExtensions>
</ExtAllow:Document>

5.4 Name/Value Pairs

Description
The Name/Value Pair Design Pattern is intended to handle data that is structured as a group of
names (or fields) and corresponding values. The key step in implementing this pattern is
recognizing the appropriate situations where it should be used. Many pieces of data can be
considered to be field/value pairs; in fact any tag in an XML document can be viewed as a field
and value. For example, in an incorrect usage a name can be represented as:

<TagName>FirstName</TagName>
<TagValue>John</TagValue>
<TagName>LastName</TagName>
<TagValue>Smith</TagValue>

However, a whole document should not be constructed in this manner; in general specific tag
names should be used.

The key to recognizing where to use a Name/Value Pair Pattern is to identify:

• That the data is related in some distinct manner
• That the set of fields and values is fairly flexible in two ways: Only a subset of the pairs

is ever sent in a particular document, and the set of allowable fields may change fairly
frequently.

Some types of data that meet these criteria would be Reject Fields, Assumed Fields, or Verified
Fields. For example, Assumed Fields consist of the name of the field on which an assumption
was made, and the value to which that field was assumed. These pairs are all related because
they all represent assumptions. The list of assumed fields varies greatly from document to
document; some documents might have many assumptions made, some very little.

Code
The following is an example of the XML Schema code required to implement a Name/Value
Pair Pattern:

<xs:element name="Assumptions" type="AssumptionsType" minOccurs="0"/>
<xs:complexType name="AssumptionsType">
 <xs:sequence>
 <xs:element name="Assumption" type="AssumptionType"
maxOccurs="24"/>
 </xs:sequence>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 50

</xs:complexType>
<xs:complexType name="AssumptionType">
 <xs:sequence>
 <xs:element name="FieldName" type="FieldNameType"/>
 <xs:element name="FieldValue" type="FieldValueType"/>
 </xs:sequence>
</xs:complexType>

Example
Based on the XML Schema code defined above, a snippet of a sample document would appear
as the following:

<Assumptions>
 <Assumption>
 <FieldName>LastName</FieldName>
 <FieldValue>Smith</FieldValue>
 </Assumption>
 <Assumption>
 <FieldName>MaritalStatus</FieldName>
 <FieldValue>Single</FieldValue>
 </Assumption>
</Assumptions>

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 51

6 XML Schema Development Methodology

6.1 Overview
Designing an XML Schema is like designing an application, and it should follow a design, build,
test life cycle. The basics steps are as follows:

• Gather Requirements and Data Definitions
• Look up Data Definitions in Core Component Registry and Repository
• Assemble Schema
• Test Schema
• Deploy Schema

6.2 Gather Requirements and Data Definitions
Just like building any new system, building an XML Schema starts with good requirements.
This includes understanding the business process that will be modeled in XML, knowing the
different business scenarios, and what data is modeled in each of the scenarios. It is important
for the Schema designer to understand what data will be needed and how the data is going to
be used.

6.3 Look up Data Definitions in Core Component Registry and Repository
During this phase of Schema development, a Schema designer will search the XML Registry
and Repository for the data definitions gathered during the requirements gathering phase. For
each data element that a Schema designer searches for, there are three possibilities.

• Exact Match – The Schema designer will use the Core Component, as is, to model this
piece of data in XML.

• Close Match – The Schema designer will evaluate if a modification can be made to the
Core Component that will allow this core component to be used in this Schema. If a
modification can be made to update a Core Component, then the Schema designer must
go through the change process outlined in the PESC Policies and Procedures manual. If
this change cannot be made, then the Schema designer must follow the Enhancement
Request Management process to create a new Core Component.

• No Match – The Schema designer must go through the Enhancement Request
Management process to create a new Core Component, and get it stored into the XML
Registry and Repository.

Metadata Essential for XML Syntax
To facilitate creation of schemas, the following metadata items should be recorded (these should
not be considered a limit) in the data dictionary for each element.

• Simple Types
o Element name
o Data type (string, date, number, etc)
o Cardinality rules

Comment [MMB1]: Need to
provide actual location in the
document.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 52

o Element description
o Element equivalence in other transaction(s)
o

Element facets such as minimum length, maximum length, minimum values, maximum
values, or patterns depending on the data type.

o Values of code elements
• Aggregate Items (Complex Types)

o Element name
o Element sequence
o Cardinality rules
o Element description
o Element equivalence in other transaction(s)

Data Types
The following simplified list of datatypes should be used for core component analysis, instead
of the full set supported by XML schemas. Each type has several optional attributes that may be
specified, as needed, for a particular data item.

• Number - precision (number of decimal places), minimum value, maximum value
• String (as defined by the W3C in XML Schema Part 2: Datatypes) - minimum length,

maximum length, and pattern facets (such as NNN-NN-NNNN for Social Security
Numbers). Patterns, if used, must be specified using a regular expression language as
defined by the W3C in XML Schema Part 2: DataTypes Regular Expressions. If a pattern
facet is specified in the Core schema it may be modified by a Sector schema as long as
that modification is a subset of the Core schema pattern. If an element contains a
member of a list, all potential list values must be specified.

• NOTE: If a string item is specified as mandatory in an aggregate item, it is
recommended to have a minimum length of 1.

• Date
• Time
• DateTime
• Boolean - 0,1,true,false

When a data item is defined, it must be assigned a type from this set. The attributes listed
should be used to place restrictions on the allowed values. If the attributes are not listed in the
data item’s definition, then there are no restrictions beyond the general restrictions implied by
the datatype.

Aggregate Items

Specification of Aggregates
Aggregate data items are composed of two or more data items. For aggregates the following
apply.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 53

• The included elements must be specified in sequence. The core dictionary should specify
the common elements.

• Sector dictionaries may restrict included elements, and may add additional elements.
• Cardinality (how many times an included element may occur in the aggregate) shall be

specified for aggregates in the core dictionary. The widest common range of cardinality
shall be expressed in the Core. The cardinality of elements within aggregates in the Core
is defined as that which is most applicable to the widest range of uses, with a goal of
minimizing the need for modification in sector or document schemas. The defaults in
most cases will be 0..1 or 1..1).

• The cardinality shall be expressed as l..u where l is the lower number of occurrences and
u is the upper number of occurrences. A wild card of "*" shall be used to indicate no
upper limit. (For example, a cardinality of 1..1 means that the data item is mandatory in
the aggregate and can occur only once. 0..1 means that the data item is optional, and can
occur no more than once. 0..* means that it is optional and if it does occur there are no
limits on how many times it can occur.)

NOTE: It is recommended that judicious consideration be given before specifying an
item in an aggregate as mandatory (minimum cardinality of 1).

Issues Concerning Aggregates
The following recommendations are made for addressing issues regarding aggregates.

• Over-riding the cardinality of an item in an aggregate on a per document basis
(example: a street address is mandatory in a reissue but is not mandatory in an
adjustment.)
It is recommended that this type of definition not be supported since it makes defining
reusable aggregates more complex. One recommended approach is to define street
address with a cardinality 0..2 in an "address" aggregate, but define address 1..1 in the
reissue and 0..1 in the adjustment.

• Conditional use of items in an aggregate – As in the case of X12 EDI, these are the relational
conditions often imposed on elements in segments.
(examples: Use "a" or "b" but not both;

if "a" then use "b", else use "c".)
It is recommended that conditionals not be supported since it adds complexity to the
analysis and construction of the schemas. Use of such conditional restrictions and edits,
not being supported in the schemas should be the responsibility of the business
applications that use the data.

Analysis Orientation
It is recommended that the data dictionary use the core components as "abstract" items or types
rather than the full set of all particular items.

(example: a general "entity" is defined rather than specifying "student", "lender", or
"guarantor" separately.)

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 54

This approach enhances reusability and simplifies maintenance.

6.4 Assemble Schema
Once the Schema designer has located the entire set of core components needed to model this
interface, the Schema designer is now ready to combine these core components into a Schema.
The Schema designer should attempt to leverage existing sector libraries, and existing message
specifications stored in the XLM Registry and Repository when building a new schema. These
existing resources will save the Schema designer time, and limit mistakes. The Schema designer
should follow the design patterns and best practices outlined in this document, XML Technical
Reference and Usage Guideline.

6.5 Test Schema
A Schema should go through two phases of testing. The first phase of testing is to try and
model each of the required business scenarios. If any issues are found in this phase of testing,
then the Schema designer must correct them by either going back to the Core Component
Registry and Repository, or correcting the assembly of the Schema. The second phase of testing
is Inter System Testing. The Schema should be used during a System’s IST to test out the
interface.

6.6 Deploy Schema
Once a Schema has completed the testing phase of Schema development, it is ready to be
deployed. A Schema’s deployment process should follow the same deployment process that
application code goes through.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 55

7 XML Schema Object Management

7.1 Overview
The PESC XML Core Component Registry and Repository will store a large amount of XML
artifacts, such as Core Components, Sector Libraries (and their constituent components), and
complete Message Specifications. This vast amount of information objects needs to be
appropriately managed in order to be effective and useful for PESC. There are two components
to the management of these objects:

• Classification of Objects
• Versioning of Objects

The first component, classification, focuses on how to make XML artifacts easy to find and
understand. The second component, versioning, focuses on how to manage change in an XML
artifact, and across XML artifacts. The following sections describe these components in detail.

7.2 Classification of Objects

Overview
PESC will use a classification scheme to group Core Components into manageable sets. A
classification scheme, also known as taxonomy, attempts to divide the objects across a given
information domain into two or more distinct groups. There are various ways for determining
the groups to use in a classification scheme. Generally speaking, groupings can be constructed
along one or more facets. Examples of general facets include:

• Audiences/Actors
• Projects
• Services
• Locations
• Functions
• Disciplines
• Chronology

Data can be grouped by more than one of these classifications. For example, for fruit:

• Fruit Types: Citric and Non-Citric
• Fruit Colors: Orange, Red, Yellow, Green

In this manner the following fruit can be classified along the following facets:

• Banana: Non-Citric and Yellow/Green
• Orange: Citric and Orange

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 56

Only as many classification facets as necessary should be used to construct a classification
scheme for an information domain. Thought should be given to the future elements that may
be added to the information domain, as well as the current set of elements. The complete set of
classifications is called a Classification Scheme.

PESC XML Registry Classification Scheme
As stated above, a classification scheme is a key component to the PESC XML Registry, since it
will greatly increase the usability of the repository by making the elements far easier to access
and understand. The classification scheme developed will be built specifically to maximize ease
of access to PESC XML artifacts.

Analysis of the data elements reveals that the following classification scheme most naturally fits
the data elements within the structures and characteristics of PESC:

I. Organization
§ Demographics

II. Person
§ Identification
§ Demographics
§ Financial

III. School
§ Demographics
§ Participation

IV. Financial Partner (FP)
§ Demographics
§ Participation

V. Aid
§ Loans and Grants
§ Disbursements

A brief review of this scheme: The top level of the classifications is based on a union of two
facets within PESC, namely:

• The principal Actors involved in PESC’s business processes: Entity, Person, School,
Organization

• The central Object (or Service) provided by PESC: Aid

The classifications on the next level consist of different types of Characteristics of the Actors,
and a further refinement of the different types of Services under the top level Service (Aid).

The Core Components will be managed along these classifications. Each Core Components
library file is a collection of the components; likewise, the libraries will also be managed along
these categories. The main technical mechanism for indication of groupings is the Namespace.
Namespaces as they are defined along the categories, are discussed in Section 3.5.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 57

7.3 Versioning of Objects

Overview
Each Core Component, Core Component Library, Sector Library, and XML Schema will have a
Major Version, Minor Version, and Micro Version. A change in the Major Version will occur if
the change in the object is not backward compatible. A change in the Minor Version occurs
only when a change is made to the XML representation, but the change is backward compatible
with all previous versions for that major version. A change in the Micro Version occurs when
there is a change to something other than the XML representation of an object. Specific
descriptions for each object type will explain what makes an object change backward
compatible. All object types will follow the same representation pattern for versioning.
Versions will be represented by three integers separated by periods.

 Example Version Representation
 Major Version: 2
 Minor Version: 1
 Micro Version: 3
 Version Representation: 2.1.3

Each new component is created with a version of “1.0.0”. When a change is made to the Minor
Version, the Micro Version resets to “0”. For example, if the original version was “2.1.3”, and
there was an update to the Minor Version, then the new version would be “2.2.0”. If there is a
change to the Major Version, then the Minor Version and the Micro Version are both reset to
“0”. For example if the original version was “2.1.3”, and there was an update to the Major
Version, then the new version would be “3.0.0”.

Versioning Techniques
XML Schemas can be versioned using the following techniques:

1. Change the (internal) Schema version attribute.
2. Create a Schema Version attribute on the root element.
3. Change the Schema’s targetNamespace
4. Change the name/location of the Schema.

Core Component Versioning
The Core Component Version is stored in a field in the Registry and Repository. The version is
also noted in the Annotation section of the XML definition of a Core Component. The following
types of changes to Core components represent modifications that will result in a Major Version
change for a Core Component:

• Change to Base Type such that all previously accepted values would no longer be valid
• Change to a more Restrictive XML Representation such that all previously accepted

values would no longer be valid.
• Change to the meaning of a Core Component Definition (A change can be made to the

definition of a Core Component without changing the meaning, these types of changes
would be referred to as descriptive changes.)

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 58

• Change to the XML Tag Name.
• Change to the Type Name.
• Change to any other part of the XML representation that makes the XML definition

more restrictive.

The following represents a list of changes that would result in a Minor Version change. This list
is not meant to be all encompassing. In general, a Minor Version change can be thought of as a
change to the XML representation that does not invalidate any previously valid values.

• Add a new valid value.
• Add a new valid format.
• Change to a Base Type that does not remove previously valid values.

The following represents a list of changes that would result in a Micro Version change. This list
is not meant to be all encompassing. In general, a Micro Version change can be thought of as a
change to anything other than the XML representation of a Core component.

• Add or remove a “Related Term”.
• Change to the “Definition”.
• Change to the “Stability Indicator”.

It should be noted that a change to the “Status” of a Core Component does not result in a
version change to the actual Core Component. However, this change will result in version
changes in the Core Component Library as well as the Sector Library.

Core Component Library Versioning
The Core Component Library Version is stored in the following places:

• As a field in the Registry and Repository.
• As the last characters in the Name/Location of the Core Component library.
• As the last characters in the Target Namespace (targetNamespace="…v1.1.3").

The following types of changes represent modifications that will result in a Major Version
change for a Core Component Library:

• Make a Major Version change to a Core Component in the Sector Library.
• Add a new required element in an Aggregate.
• Make an element in an aggregate that was previously optional required.
• Reduce the maximum number of times an element can occur in an aggregate.
• Remove an element from an Aggregate.
• Change the “Status” of a Core Component to “Withdrawn”.
• Change the Core Component Library’s Namespace.

The following represents a list of changes that would result in a Minor Version change to the
Core Component Library. This list is not meant to be all encompassing. In general, a Minor

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 59

Version change can be thought of as a change to the XML representation that does not
invalidate any previously valid structures or previously valid values.

• Make a Minor Version change to a Core Component.
• Add a new optional element to an aggregate.
• Make a previously required element in an aggregate optional.
• Increase the maximum number of times an element can occur in an aggregate.
• Change the “Status” of a Core Component to anything other than “Withdrawn”.

The following represents a list of changes that would result in a Micro Version change. This list
is not meant to be all encompassing. In general, a Micro Version change can be thought of as a
change to the anything other than the XML representation.

• Make a Micro change to a Core Component.

Sector Library Versioning
The Sector Library Version is stored in the following places:

• As a field in the Registry and Repository.
• As the last characters in the Name/Location of the Sector library.
• As the last characters in the Target Namespace (targetNamespace="…v1.1.3").

The following types of changes represent modifications that will result in a Major Version
change for a Sector Library:

• Make a Major Version change to a Core Component Library reference by the Sector
Library.

• Make a Major Version change to a Core Component in the Sector Library.
• Add a new required element in an Aggregate.
• Make an element in an aggregate that was previously optional required.
• Reduce the maximum number of times an element can occur in an aggregate.
• Remove an element from an Aggregate.
• Change the “Status” of a Core Component to “Withdrawn”.
• Change the Sector Library’s Namespace.

The following represents a listing of changes that would result in a Minor Version change to the
Sector Library. This list is not meant to be all encompassing. In general, a Minor Version
change can be thought of as a change to the XML representation that does not invalidate any
previously valid structures or previously valid values.

• Make a Minor Version change to a Core Component Library reference by the Sector
Library.

• Make a Minor Version change to a Core Component.
• Add a new optional element to an aggregate.
• Make a previously required element in an aggregate optional.
• Increase the maximum number of times an element can occur in an aggregate.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 60

• Change the “Status” of a Core Component to anything other than “Withdrawn”.

The following represents a listing of changes that would result in a Micro Version change. This
list is not meant to be all encompassing. In general, a Micro Version change can be thought of
as a change to the anything other than the XML representation.

• Make a Micro change to a Core Component Library referenced by the Sector Library.
• Make a Micro change to a Core Component.

XML Schema Message Specification Versioning
The XML Schema Version is stored in the following places:

• As a field in the Registry and Repository.
• As the last characters in the Name/Location of the Sector library.
• As the last characters in the Target Namespace (targetNamespace="…v1.1.3").

The following types of changes represent changes that will result in a Major Version change for
an XML Schema:

• Make a Major Version change to a Sector Library reference by the XML Schema.
• Make a Major Version change to a Core Component Library reference by the XML

Schema.
• Add a new required element in an Aggregate.
• Make an element in an aggregate that was previously optional required.
• Reduce the maximum number of times an element can occur in an aggregate.
• Remove an element from an Aggregate.
• Make a change to the XML Schema’s Namespace.

The following represents a listing of changes that would result in a Minor Version change to the
XML Schema. This list is not meant to be all encompassing. In general, a Minor Version change
can be thought of as a change to the XML representation that does not invalidate any previously
valid structures or previously valid values.

• Make a Minor Version change to a Sector Library reference by the XML Schema.
• Make a Minor Version change to a Core Component Library reference by the XML

Schema.
• Add a new optional element to an aggregate.
• Make a previously required element in an aggregate optional.
• Increase the maximum number of times an element can occur in an aggregate.

The following represents a listing of changes that would result in a Micro Version change. This
list is not meant to be all encompassing. In general, a Micro Version change can be thought of
as a change to the anything other than the XML representation, such as a non-meaning-
changing adjustment to the definition text, or an addition or change to the related terms.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page 61

• Make a Micro change to a Sector Library reference by the Sector Library.
• Make a Micro change to a Core Component Library reference by the Sector Library.

Postsecondary Electronic Standards Council (PESC)
PESC Guidelines for XML Architecture and Data Modeling

Version: 3.0 April 29, 2005
Status: Final Page A-1

Appendix A: Revision History

DATE SECTION/
PAGE

DESCRIPTION REQUESTED BY MADE BY

2/20/05 Whole
Document

Initial Revision M. Bolembach

