Innovative Satellite Launch Program

enabling a healthy public, economy, and planet through an integrated, comprehensive, & sustained system of Earth observation, research & education

Brian Taylor, Dean, School of Ocean & Earth Science & Technology

- Earth
 - understanding Earth systems

- Oceans
 - hydrosphere-biosphere-atmosphere interactions

- Atmosphere
 - tropical and global weather dynamics

- Space
 - exploring Earth, Moon, Mars, and beyond

- Energy
 - developing alternative energy resources
Due to High Mission-Related Costs, US Technology Lead in Space Dwindles.
Growing Interest in “Rapid, Low-Cost” Space

- **Change the economics: Smaller, Cheaper**
 - Current satellite & launch cost for “big” satellite ~$1B ($500M-$1500M)
 - Current small satellite & launch cost ~ $140M
 - Develop low-cost small satellites & satellite rideshare launches

- **Develop New Space Technology**
 - NRO, Boeing & Air Force investing in CubeSats
 - Operationally Responsive Space Office (DoD) & NASA (Ames & Office of Chief Technologist) promoting small satellite development.
 - Advance Tech Readiness Levels for critical technologies
 - Accept experimental missions for iterative R&D.
 - Return to 60’s mentality: failure is part of learning process

- **Rapid Response Launch Plan**
 - For Disaster Management & On-orbit Asset Replacement
 - Pre-stage, Modular, “Ship & Shoot”
 - Build redundancy with Constellations of small sats.

Images of UH Kumu A‘o CubeSat and NASA’s PharmaSat.
The mission of HSFL is to:

- promote innovative engineering & science research for terrestrial and planetary space missions
- develop, launch, and operate small spacecraft from the Hawaiian Islands to accelerate the validation of new space technologies
- provide workforce training in all aspects of unmanned space missions
- promote synergistic collaborations between educational, governmental, & corporate institutions interested in space exploration
Spacecraft
Instrument
Integrate & Test
Launch Vehicle
Launch Support
Ground Station
Operations
Data
First HSFL Program: LEONIDAS

- **Objectives:**
 - Conduct two demonstration space launches from the Navy’s Pacific Missile Range Facility in Hawaii using a low cost launch system.
 - Create workforce training opportunities.
 - Increase access to space for DoD, NASA, and University payloads – including short-duration technology demonstration missions.

- Hawaii Congressionally directed program supported in the FY07-present Defense Appropriations Bills
 - LEONIDAS = Low Earth Orbiting Nanosatellite Integrated Defense Autonomous System
 - Funded through the Operationally Responsive Space Office
 - UH’s Hawaii Space Flight Laboratory (HSFL) is the prime contractor
 - **SPARK** Launch Vehicle (Space-borne Payload Assist Rocket Kauai) based on redesigned Sandia National Lab’s Strypi ballistic rocket.
 - Scout rail launcher from VAFB rebuilt & extended
LEONIDAS Leverages Exceptional Expertise

DoD Office of Operationally Responsive Space (ORS)
 Government Contracting Agency
 Director – Dr. Peter Wegner
 LEONIDAS PMs – Dr. Mark Franz, Mr. Steven Buckley

University of Hawaii – Hawaii Space Flight Laboratory (HSFL)
 Prime Contractor
 Program Manager – Dr. Luke Flynn

Sandia National Laboratories (SNL)
 HSFL’s Launch Systems Contractor
 Project Lead – Mr. Todd Criel

Aerojet, a GenCorp Inc. company
 SPARK Solid Rocket Motor Provider
 Managers – Mr. Mark Kaufman, Mr. John Napier

USN Pacific Missile Range Facility (PMRF)
 Launch Site & Range Safety
 Commander – Capt. Nicholas Mongillo

White Sands Missile Range (WSMR)
 Scout/SPARK Erector Modifications
 Project Lead – Mr. Sal Rodriguez

NASA Ames Research Center (ARC)
 Launch Vehicle Payload Adapter
 Program Manager – Mr. John Hines
SPARK Launch Vehicle

Redesign Sandia Strypi
- Three-stage solid propellant motor stack.
- Leverage heritage devices that have flown on other rockets.
- Fin & spin stabilized vehicle, with attitude control system.
- Payload objective: 250kg to 400km Sun-synchronous Orbit from Kauai. Higher payload mass can be achieved to lower inclination orbits.

Aerojet Corp. – Strategic Alliance Agreement signed with UH in October, 2010 to provide all 3 motor stages
- Optimized motor design: exceeds payload objectives.
- Maximize performance & minimize cost by simplifying design & manufacturing process.
- Meet quick response launch requirement

Designed to Reduce Cost, Simplify Launch & Increase Reliability
Launch Site: Pacific Missile Range Facility

- Pacific Missile Range Facility
 - Existing launch range on Kauai.
 - Partnering with UH and ORS
 - Provide Range Safety support
 - Professional execution & supervision of LEONIDAS launches

- SPARK Rail Launch System
 - Rail imparts stability & directional control for rocket launch.
 - Adjusting launcher trajectory allows multiple orbit tracks.
 - Launcher design enables economical deployment at complimentary sites.

- Polar & Sun-synchronous launch options from PMRF (Kauai)
Economic Growth & Workforce Development

- UH, Hawaii Space Flight Lab, has developed a complete small satellite workforce development program that provides the State a new pathway for economic growth.
- Niche companies will be spun-off in Hawaii.
 - UH & Aerojet will form a launch vehicle integration and launch services partnership.
 - UH & a future partner could spin-off a small satellite development company.
- Mission Support Tools will be maintained at UH to provide necessary infrastructure for UH and Hawaii commercial space research.
 - Clean room facilities for satellite integration.
 - Large thermal-vacuum chamber & vibration table for satellite testing.
 - Spin-balance table for payload integration and processing
- Unprecedented educational training opportunities in all aspects of space mission operations; engineering, science & technology development.
 - Kauai CC: program management & telemetry
 - Windward CC: education & outreach through aerospace center
 - UH Hilo: (future) software & automation
 - System-wide u/grad & high school Space Grant program

CC’s: technical Associate Degrees
4-yr: Bachelor’s & Graduate Degrees
Enablers: Mission Support Tools

Payload Integration, Test, Launch Prep

- Clean rooms to assemble satellites.
 - Systems integration
 - Thermal/vacuum test
 - Vibration/shock testing
- Payload Spin Balancer for integrating multiple rideshare small sats in a single mission

Ground Stations

- UH/HSFL maintains UHF/VHF receiving stations with Kauai CC
- Ground station provides command & control broadcast & data downlink capabilities.
- HSFL partnering with Alaska & European receiving stations for greater data downlink capability.

Mission Operations from UH Campus

- can track multiple small satellites.
- working on a NASA Ames project to develop a Mission Operations System to:
 - command & control multiple spacecraft.
 - run autonomously
 - be a standard adopted by NASA Ames and other Universities.
UH-Aerojet Partnership: Launch Services Provider

- 501(c)3 LLC being planned to benefit:
 - Aerojet: Increase solid rocket motor production, Hawaii “skunkworks” for new R&D
 - UH: Workforce training, Self-funded Science & Engineering Missions
 - Joint: Lower Overhead & Costs, Handle Risk Management, Hold Intellectual Property

Mark & Amber Kaufman
Aerojet Exec Dir Strategic Programs

Luke Flynn
HSFL Director
Kumu A’o CubeSat
- Purpose: Technology readiness level advancement of new flight components
- To be launched on 1st mission
- Built by CoE undergraduate students – mostly Hawaiian

HawaiiSat-1
- Purpose: Thermal and visible imaging payloads to study Earth
- To be launched on 2nd mission
- Built by CoE and SOEST faculty, and CoE Grad Students
- Partnership with NASA Ames
Thermal Hyperspectral Imager (THI)

- Measures the thermal energy emitted by Earth’s surface in 30 wavebands 7.5-13.5 microns

- Applications include:
 - monitoring active volcanoes, wildfires & urban heat islands
 - monitoring atmospheric trace gases (e.g. methane)
 - detecting groundwater discharges into coastal waters

Designed & built at the Hawaii Institute of Geophysics & Planetology, funded by NASA
Rideshare Payload Configurations

- Large fairing capacity for multiple small satellites
- NASA Ames Payload Adapter and Deployer (PAD)
 - PAD can carry 24 1-u Cubesats or a combination of 1-u, 3-u, 6-u, & 12-u Cubesats
Small Sat Performance and Cost Models

44 States currently build small satellites at over 80 Universities!

<table>
<thead>
<tr>
<th>Spacecraft Size</th>
<th>Mass (kg)</th>
<th>S/C Volume (cm³)</th>
<th>Power (W)</th>
<th>Bus Cost ($K)</th>
<th>Launch Cost ($K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-u</td>
<td>1-2</td>
<td>10 x 10 x 10</td>
<td>2</td>
<td>20-30</td>
<td>40-60</td>
</tr>
<tr>
<td>3-u</td>
<td>5-6</td>
<td>10 x 10 x 30</td>
<td>4-5</td>
<td>100-200</td>
<td>250-300</td>
</tr>
<tr>
<td>6-u*</td>
<td>12-15</td>
<td>10 x 20 x 30</td>
<td>12-15</td>
<td>400-500</td>
<td>750</td>
</tr>
<tr>
<td>12-u*</td>
<td>30-40</td>
<td>20 x 20 x 30</td>
<td>40</td>
<td>1000</td>
<td>1500</td>
</tr>
<tr>
<td>HawaiiSat</td>
<td>60-80</td>
<td>60 x 60 x 70</td>
<td>100</td>
<td>2000</td>
<td>4500</td>
</tr>
<tr>
<td>Other</td>
<td>>80</td>
<td>larger</td>
<td>??</td>
<td>??</td>
<td>Up to 12000</td>
</tr>
</tbody>
</table>

- Goal: Future 3-u CubeSat could be built and launched within the budget of a NASA EPSCoR Research Award ($750K over 3 years).
- * 6-u and 12-u CubeSats have not flown in orbit.
Constellations of small satellites

Gravity from Altimetry

Monitoring Methane

Ocean Color

Coral Reef Health

Space Weather

Water Vapor from GPS
Innovative Satellite Launch Program

- HSFL - PMRF - Sandia NL - Aerojet - NASA-AMES working together are developing a game-changing satellite launch & deployment system:
 - High heritage, low risk
 - Capable of rapid response (< week)
 - Low-cost for small spacecraft
- Recurring launch costs at $10-12M (inclusive of range costs) are a fraction of current alternatives.
- This enables new paradigms of satellite development, cal/val, & deployment
 - (e.g., constellations of small satellites)
- “the sky is NOT the limit” - this promises a new economic driver & high-tech workforce for Hawaii
- Watch for 1st launch in 2012