The Energy and Carbon Conundrum in Sustainable Agricultural Production

Paul L.G. Vlek

Center for Development Research (ZEF), Bonn, Germany
West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), Accra, Ghana
World population

Prospect

Population in billions

year

1950 '60 '70 '80 '90 '10 '20 '30 '40 2050

high

medium

low
The options to meet food demand

Population/Income growth

Agricultural production

Option 1
- Extensification
 - Conversion to agricultural land

Option 2
- Intensification
 - Use of inputs and machinery
Changes in agricultural land use 1960 - 2000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed countries</td>
<td>3760</td>
<td>-2</td>
</tr>
<tr>
<td>Developing countries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>2682</td>
<td>19</td>
</tr>
<tr>
<td>Permanent pasture</td>
<td>1973</td>
<td>16</td>
</tr>
<tr>
<td>Arable land</td>
<td>650</td>
<td>22</td>
</tr>
<tr>
<td>Permanent crops</td>
<td>59</td>
<td>81</td>
</tr>
</tbody>
</table>

Smith et al., 2007
Conversion of terrestrial biomes

Fraction of potential area converted

-10 0 10 20 30 40 50 60 70 80 90 100

Medit. forest, woodlands and scrub
Temp. forest, steppe and woodland
Temp. broadleaf and mixed forests
Trop. and sub-trop. Dry broadleaf forests
Flooded grasslands and savannas
Trop. and sub-trop. grasslands, savannas and shrublands
Trop. and sub-trop. coniferous forests
Desert
Montane grasslands and shrublands
Trop. and sub-trop. moist broadleaf forest
Temperate coniferous forest
Boreal forest
Tundra

Source: MEA, 2005
Land degradation in various parts of the world

Source: MEA, 2005
Release of CO$_2$ for agricultural expansion (1980 – 2000) for selected regions

Total: 45 Pg CO$_2$

~ 2.25 Pg CO$_2$ per year or
2250 10^6 metric tons yr$^{-1}$

<table>
<thead>
<tr>
<th>Region</th>
<th>Carbon Dioxide (Pg CO$_2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latin America</td>
<td>20.4</td>
</tr>
<tr>
<td>(West-) Africa</td>
<td>3.8</td>
</tr>
<tr>
<td>(West-) Africa</td>
<td>5.4</td>
</tr>
<tr>
<td>Asia</td>
<td>6.6</td>
</tr>
<tr>
<td>Asia</td>
<td>3.6</td>
</tr>
<tr>
<td>Asia</td>
<td>0.2</td>
</tr>
<tr>
<td>Asia</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Legend:
- **forest**
- **disturbed forest**
- **shrubland**
CO₂ emissions from land use change

Source: Houghton, 2010; GFRA, 2010
CO$_2$ emissions from land use change

Source: Houghton, 2010; GFRA, 2010
The options to meet food demand

Problem Statement

Increasing GHG emissions
Loss of ecosystem services
Pressure on marginal land

Population/Income growth
Agricultural production

Option 1
Extensification
Conversion to agricultural land

Option 2
Intensification
Use of inputs and machinery
What are the consequences and ecological cost of agricultural intensification?

Index of total agricultural output per capita by region (index 1961-2005)

Source: Hazell and Wood, 2008
Tripled World Cereal Production–Areas Spared Through Improved Technology, 1950-2000

Source: FAO Production Yearbooks and AGROSTAT

See also: Rudel et al., 2009: Proc Natl Acad Sci 106(49)20675
Rising energy consumption for agriculture

Energy use in agriculture amounts to ~2% of the total energy use worldwide:
- especially in developing countries a higher demand is expected in the future

Source: IEA, 2010

Total energy use for agriculture:
1990: 197×10^6 toe
2001: 222×10^6 toe

![Energy Consumption in Agriculture (Mtoe)]
Commercial energy consumption in different regions (2001)

<table>
<thead>
<tr>
<th>Region</th>
<th>Commercial energy use (10^6 toe yr(^{-1}))</th>
<th>Commercial energy use in agriculture (10^6 toe yr(^{-1}))</th>
<th>Share of energy use in agriculture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Saharan Africa</td>
<td>400</td>
<td>6</td>
<td>1.6</td>
</tr>
<tr>
<td>Latin America</td>
<td>460</td>
<td>17</td>
<td>3.8</td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>500</td>
<td>11</td>
<td>2.1</td>
</tr>
<tr>
<td>Asia (incl. China)</td>
<td>2 200</td>
<td>64</td>
<td>2.9</td>
</tr>
<tr>
<td>Developing countries</td>
<td>3 560</td>
<td>98</td>
<td>2.7</td>
</tr>
<tr>
<td>Europe</td>
<td>1 900</td>
<td>50</td>
<td>2.7</td>
</tr>
<tr>
<td>North America & Pacific</td>
<td>3 400</td>
<td>38</td>
<td>1.1</td>
</tr>
<tr>
<td>Others (e.g. Former Soviet Union)</td>
<td>1 200</td>
<td>36</td>
<td>3.0</td>
</tr>
<tr>
<td>World</td>
<td>10 060</td>
<td>222</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Source: IEA, 2005
Food production is dependent on fossil energy

The energy efficiency ratio is the total annual food energy divided by the total energy input.

<table>
<thead>
<tr>
<th>Region</th>
<th>Commercial energy use in agriculture (10^{13} kcal yr$^{-1}$)</th>
<th>Total annual food energy produced (10^{13} kcal yr$^{-1}$)</th>
<th>Fossil energy efficiency (Ef) in agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Saharan Africa</td>
<td>6</td>
<td>56</td>
<td>9.3</td>
</tr>
<tr>
<td>Latin America</td>
<td>17</td>
<td>56</td>
<td>3.3</td>
</tr>
<tr>
<td>Middle East & North Africa</td>
<td>11</td>
<td>46</td>
<td>4.2</td>
</tr>
<tr>
<td>Asia (incl. China)</td>
<td>64</td>
<td>346</td>
<td>5.4</td>
</tr>
<tr>
<td>Developing countries</td>
<td>98</td>
<td>480</td>
<td>4.9</td>
</tr>
<tr>
<td>Europe</td>
<td>50</td>
<td>86</td>
<td>1.7</td>
</tr>
<tr>
<td>North America & Pacific</td>
<td>38</td>
<td>43</td>
<td>1.1</td>
</tr>
<tr>
<td>Other</td>
<td>36</td>
<td>105</td>
<td>2.9</td>
</tr>
<tr>
<td>World</td>
<td>222</td>
<td>640</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Source: IEA, 2005
Total Energy Input and Output and Energy Efficiency (Et) in Agricultural Production Systems

<table>
<thead>
<tr>
<th>Region</th>
<th>Cropping system</th>
<th>Energy (kJ/ha and year)</th>
<th>Total energy efficiency (Et) in agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Guinea</td>
<td>Mixed root crops</td>
<td>41</td>
<td>2.5</td>
</tr>
<tr>
<td>Mexico</td>
<td>Semi-intensive maize</td>
<td>14.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Surinam</td>
<td>Intensive rice</td>
<td>51.5</td>
<td>41.1</td>
</tr>
<tr>
<td>USA</td>
<td>Maize</td>
<td>76.9</td>
<td>29.9</td>
</tr>
</tbody>
</table>
Availability of agricultural land per capita and region

Source: FAOSTAT database, 2008
Increasing dependence on fossil energy

Food security and yield increase

The energy use and carbon conundrum in the agricultural sector

Population/Income growth

Agricultural production

Increasing GHG emissions

Loss of ecosystem services

Pressure on marginal land

Option 1
Extensification

Conversion to agricultural land

Option 2
Intensification

Use of inputs and machinery

Increasing GHG emissions

Increasing dependence on fossil energy

Food security and yield increase

Problem Statement
Annual CO₂ Greenhouse gas emissions from agricultural land use

<table>
<thead>
<tr>
<th></th>
<th>CO₂ emissions (10⁶ t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral fertilizer</td>
<td>130</td>
</tr>
<tr>
<td>Farm machinery</td>
<td>69</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
<tr>
<td>Land Conversion</td>
<td>2000+</td>
</tr>
</tbody>
</table>

So what is the best bet?
Options for reducing the climate footprint of agriculture

Cropland includes permanent and shifting cultivation.

Potential for sparing land
Potential for afforestation

Modified after: Grainger A PNAS 2009;106:20557-20558
AFFORESTATION AS AN ADAPTIVE AND MITIGATING LAND USE STRATEGY - Uzbekistan

• Khamzina, Lamers and Vlek 2008 Forest Ecology and Management, 255.
Total annual CO$_2$ emission for 20% additional fertilizer use in the production of rice, maize and wheat and C sequestration on marginal land without loss of overall production

Carbon sequestration (106 t yr$^{-1}$) CO$_2$ emissions (106 t yr$^{-1}$)

- CO$_2$ sequestration by forest regeneration
 - high: 218.1
 - low: 92.3

- CO$_2$ balance
 - low: 206.1
 - high: 80.4
 - average: 143.3

<2%
Conclusions

- Agriculture production is fossil fuel depended and carbon intensive
- There is a high demand of agricultural land, especially in developing countries
- The cost in CO$_2$ release in land conversion is substantial - REDD
- The alternative is intensification which is cheaper in CO$_2$ loading
- Sequestration of carbon with afforestation would far outweighs the emissions associated with production of extra fertilizer - CDM
- This route will make agriculture ever more dependent on fossil fuel.
- In the long run, alternative energy sources are needed to sustain agriculture.......