Experience on Gathering Meaningful Data for Life Cycle Analyses

- Experience of the BASF Eco-Efficiency Tool in Indian Agriculture

Dirk Voeste
Head of Sustainability & Product Stewardship Crop Protection

National Academy of Science - Food Security Workshop
February 17, 2011 - Washington
Samruddhi: Farmer Training Project in India
Benefits for farmers, society and environment

- Started in 2007 included over 100,000 farmers trained (2009)
- Better knowledge about farming
- Optimized disease management
- Better quality seeds
- Educate and demonstrate Good Ag Practices
- Increased productivity
- Improved prosperity
- Eco-Efficiency Analysis done for soybean farming (Guna region)

Farmer training project in India to improve sustainable production
BASF Eco-Efficiency Tool
Measure sustainability performance in agriculture

- Holistic:
 - Life-cycle analysis

- Scientific, objective:
 - Quantitative
 - Reproducible

- Cost effective:
 - Affordable
 - Reasonable time effort

- Decision oriented

Use eco-efficiency to measure sustainability in Samruddhi programme
Initial Step
Setting the right system boundaries

System boundaries define scope of the life cycle assessment

Energy
Soil / Land
Insecticides
Fungicides
Herbicides
Additives
Fertilizers

Production
Seeds
Soybean Cultivation
Field Emissions

Use
Transport
Storage
Processing

Disposal
Incineration
Secondary Use

Life cycle steps are not considered due to equal alternatives in this study
Robust and reliable data sources are essential

Inputs

Availability of farm-based data

<table>
<thead>
<tr>
<th>Factor</th>
<th>Product</th>
<th>Volume</th>
<th>Farmers' Practice</th>
<th>Samruddhi Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>Soybean</td>
<td>dt/ac</td>
<td>5.58</td>
<td>6.86</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>Diammonium-P</td>
<td>kg/ac</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Super-single-P</td>
<td>kg/ac</td>
<td>47</td>
<td>93</td>
</tr>
<tr>
<td>Seed</td>
<td></td>
<td>kg/ac</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>Fungicide</td>
<td>Bavistin</td>
<td>g/kg seed</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Herbicide</td>
<td>Pursuit</td>
<td>l/ac</td>
<td>0.27</td>
<td>0.3</td>
</tr>
<tr>
<td>Insecticide</td>
<td>Endosulfan</td>
<td>l/ac</td>
<td>0.5</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Triazophos</td>
<td>l/ac</td>
<td>0.4</td>
<td>0.375</td>
</tr>
<tr>
<td>PGR</td>
<td>Lihocin</td>
<td>l/ac</td>
<td>0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Input data is calculated average data on the base farmers’ surveys (2008 and 2009).
- Eco-profiles from either commercial databases or calculated from proprietary processes.
- Risk data (working accidents and occupational diseases from internet searches in publically available databases or publications).
- Toxicity and eco-toxicity data from MSDSs.

Table of inputs sources

<table>
<thead>
<tr>
<th>Input</th>
<th>Source</th>
<th>Year</th>
<th>Quality</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diammonium-P</td>
<td>Bousted</td>
<td>2010</td>
<td>High</td>
<td>World</td>
</tr>
<tr>
<td>Super-single-P</td>
<td>PROBAS</td>
<td>2010</td>
<td>High</td>
<td>World</td>
</tr>
<tr>
<td>Diesel</td>
<td>Bousted</td>
<td>1996</td>
<td>High</td>
<td>India</td>
</tr>
<tr>
<td>Carbendazim</td>
<td>BASF</td>
<td>1997</td>
<td>High, primary data</td>
<td>Europe</td>
</tr>
<tr>
<td>Imazethapyr</td>
<td>BASF</td>
<td>2009</td>
<td>Very high, primary data</td>
<td>USA</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>EcolInvent</td>
<td>2008</td>
<td>High</td>
<td>Europe</td>
</tr>
<tr>
<td>Triazophos</td>
<td>EcolInvent</td>
<td>2008</td>
<td>High</td>
<td>Europe</td>
</tr>
<tr>
<td>Lihocin</td>
<td>BASF</td>
<td>2009</td>
<td>Very high, primary data</td>
<td>World</td>
</tr>
</tbody>
</table>
Correlation between Data and Indicators
Statistics and perception

Air Emissions	India		Water Emissions	India		Use of Resources	India	
---------------	-------							
CO₂ (1000 t/a)	1.5 E + 06		COD (t/a)	2.53 E + 06		Oil (Mio t)	2.7 E + 02	
SOX (1000 t/a)	7.9 E + 03		BOD (t/a)	5.5 E + 05		Gas (Mio t)	3.6 E + 01	
NOX (1000 t/a)	6.6 E + 03		N-it (t/a)	1.36 E + 06		Coal (Mio t)	5.0 E + 02	
CH₄ (1000 t/a)	2.2 E + 04		NH₄N (t/a)	4.57 E + 05		Lignite (Mio t)	3.5 E + 01	
HCl (1000 t/a)	9.4 E + 03		P-it (t/a)	2.50 E + 05				
Hat. HC	2.0 E + 00		AOX (t/a)	3.75 E + 03		Limestone	4.1 E + 02	
NH₃ (1000 t/a)	3.83 E + 03		HM (t/a)	5.71 E + 02		Iron	1.4 E + 02	
N₂O (1000 t/a)	1.0 E + 03		HC (t/a)	1.14 E + 03		Manganese	3.7 E + 00	
HCl (1000 t/a)	3.57 E + 02		SO₂ (t/a)	1.43 E + 07		Copper	1.5 E + 00	
			Cl- (t/a)	2.86 E + 07		Bauxite	2.7 E + 00	
Energy								
Energy (PJ)	1.8 E + 04							

Relevance Factor
- Objective factor based on statistics.
- Data availability in publically available databases, e.g. UN-statistics, earthtrends.wri.org or national statistics.
- In case of no available data we estimate data on the base of the data from other countries (yellow box).

Societal Factor
- Subjective factor based on public polls/expert survey.
- Data provided by a survey of BASF Indian colleagues and external Indian persons (questionnaire based on a TNS survey for USA and Europe was used).

Weighing: Calculation Factor = \sqrt{\text{Relevance Factor} \times \text{Societal Factor}}
Eco-Efficiency Analysis
Individual fingerprint

Samruddhi versus Farmer’s Practice

Crucial Influence Factors

- Chosen indicators and categories are relevant contributors to the eco-efficiency results.
- Up to 100,000 data points and 11 categories and multiple indicators per study can be included depending on the system boundaries.
- Relative comparison of 2 scenarios per indicator set.
- Spider web diagram: value of '0' represents no and ‘1’ highest impact per indicator category (based on 1 MT soybean)

Key is a comprehensive set of robust and relevant indicators
Farmer Training Project in India
Higher yield, lower costs and environmental impact

Yield*: + 24%
Costs: -13%
Energy consumption: -18%
Air Emissions: -31%
Land use: -19%
Risk potential: -19%
Resource consumption: -4%
Water Emissions: +36%
Toxicity Potential: +23%

* - kg/ha, all other factors per 1 MT

Crucial Influence Factors
- Yield
- Land use for soybean cultivation
- Fertilizer type and fertilizer amounts (energy consumption, P-consumption and heavy metals)
- Occupational diseases and working accidents in agriculture
- Total cultivation cost:
 - reduced due to higher yield
 - higher yield overcompensates for add. expenses, e.g. fungicides.

Holistic approach helping farmers to improve productivity and sustainability
Scenario Analysis
Tool to identify improvement potential

Conclusion
- Samruddhi’s cultivation schedule is significantly more eco-efficient than farmers’ practice (> 5 %).
- Fertilizer and crop protection have a very strong impact on the result: the fertilizer amounts and type and their heavy metal content are relevant.
- Scenario analysis demonstrates improvement potential.
- Lacking of unique indicators for agricultural production systems.

Tool supports decision making to improve productivity in a sustainable way
What can we learn from the case study?

- Need for a holistic approach to demonstrate impact on all pillars of sustainability (no single indicator)
- Robust and relevant indicators are essential to substantiate conclusion
- Input with significant and reliable data (statistics, survey)
- Weighing factors publically accepted
- Validation of tool via stakeholder and recognized institutes
- Scenarios needed to support political decision making
- Need for more specific indicators for agricultural processes and food security

BASF develops AgBalance with specific indicators for agricultural production