

U.S. Department of Energy Sustainability Linkages

Andrew Szilagyi

U.S. DEPARTMENT OF
ENERGY

DOE's Sustainability Challenge

- How to expand our thinking about risk and sustainability to best manage existing risks?
- How do we take a more comprehensive and integrated approach to balancing impact of addressing environmental contamination risk
 - Short-term and long-term impacts
 - Worker and community impacts
 - Local and global impacts?
- How do we factor end states and future use into consideration?

Office of Environmental Management Mission

“Complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development, production, and Government-sponsored nuclear energy research.”

- Largest environmental cleanup effort in the world, originally involving two million acres at 108 sites in 35 states
- Safely performing work in challenging environments
- Involving some of the most dangerous materials known to man
- Solving highly complex technical problems with first-of-a-kind technologies
- Operating in the world's most complex regulatory environment
- Supporting other continuing DOE missions and stakeholder partnerships

EM Mission Areas

- Constructing and operating facilities to treat radioactive liquid tank waste
- Securing and storing nuclear material and transporting and disposing of transuranic and low-level radioactive wastes
- Soil and ground water remediation
- Deactivating and decommissioning contaminated buildings

Tank Waste Treatment

- More than 50 million gallons of radioactive waste in tanks at the Hanford Site in Washington
- Waste Treatment Plant under construction to vitrify the tank waste
- Plan to begin operation in 2019
- About 70 megawatts electricity demand
- Will also require diesel fuel or natural gas for steam
- Might we consider less energy-intensive treatments for the low activity portion of the waste?

Nuclear Material and Transuranic and Low-Level Radioactive Waste

- Securing and storing nuclear material and transporting and disposing of transuranic and low-level wastes in a safe and cost-effective manner
- Minimize transportation distance and use energy-efficient transportation modes
- Balance risks to workers, communities and the environment

Soil and Ground Water Remediation

- 10,000 areas needing remediation of soil or ground water or both
- Take broader integrated view of risk and impact and consider water, energy consumption and greenhouse gas emissions
- Nurture and value soil as vibrant ecosystem and use it as low-impact way to reduce risk
- Find hydrological balance between avoidance of contaminant migration and fostering healthy soil ecosystem

Building and Facility Deactivation and Decommissioning

- More than 3,000 buildings to deactivate and decommission
- Estimated cost of \$30 billion
- New technologies and energy-efficient equipment can improve sustainability of efforts
- Can also rethink solutions taking broader, integrated view of risk and impacts
- In-situ-decommissioning (encapsulation) offers opportunities to reduce impacts to workers, transportation impacts, energy consumption and air emissions

DOE Interest in Sustainability Study

- Interagency cooperation on addressing social, economic and environmental impacts of addressing cold-war era legacy risks
- Interagency cooperation on communicating new and broader ways of thinking about risk and impacts of addressing risk
- Cross media integration of risk and impact analyses to address existing risk
- Interagency collaboration on taking life-cycle approach to balance and mitigate risks as we design, construct and operate facilities