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Where are we headed?
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Transient Warming of the Paleocene-Eocene Thermal Maximum
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There is also the issue of long residence time of CO2 in the atmosphere given anticipated levels due to fossil fuel burning.

 Initial carbon pulse for the PETM (red curves), estimated to be 3000 Pg carbon using published
carbon isotope and observed deep-sea carbonate dissolution records, and a carbon cycle model (LOSCAR, Zeebe et
al., 2008; 2009). The magnitude of the input carbon mass was inferred from carbonate dissolution records, with the
Initial carbon pulse for the PETM (red curves), estimated to be 3000 Pg carbon using published
carbon isotope and observed deep-sea carbonate dissolution records, and a carbon cycle model (LOSCAR, Zeebe et
al., 2008; 2009) 




Climete Sensitivivy

Global equilibrium surface warming following a
doubling of atmospheric CO, concentration

Transient climate response - the warming at a
point of CO, doubling



From Knutti & Hegerl, 2008
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Multi-timescale Feedbacks in the Earth’s Climate System
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Temperature Anomaly (°C)
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Can Humans Induce a Greenhouse Climate?
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Recent studies of C emission standards needed to for a 2°C total warming target indicate that only a low climate sensitivity would allow for delay of mitigation action and a conservative mitigation rate – but even this still requires ≥ 90% phase-out of emissions thereafter.  For the upper bound of climate sensitivity, even negative emissions would require a global mitigation rate at least as great as the highest rate considered feasible for economic models. (from Friedlingstein et al., 2012)
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Reduced complexity coupled C cycle-climate model & transient climate response (2 - 4.5 C)

From Meinshausen et al., 2009
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Summary Points

By ~2100 - without a reduction in C emissions - atmospheric CO, could
increase to levels last experienced on Earth more than 30 million years
ago - prior to the establishment of Antarctic and Greenland ice sheets.

Given long residence time of elevated CO, in the atmosphere - it is
unlikely that global warming will be a century-timescale phenomenon.

Climate sensitivity is likely time- and state-dependent - fast feedback
estimates may not appropriately characterize future warming in a high
CO, world.

CO, stabilization target of 400 ppmv may be too high given the
possibility of accelerating 'slow' feedbacks and climate sensitivity
higher than 4.5 C, and the current growth in fossil fuel emissions &
extraction.
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