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Challenges

* Economy—economic development and growth; energy imports
* Security—foreign energy dependence, energy availability
 Environment—Ilocal (particulates, water), regional (acid rain), global (GHGs)

What role can EE & RE serve in meeting these Challenges?
e Efficiency: Buildings, Industry, Transport
e Renewable Fuels
e Renewable Electricity

Speed and Scale



Context

* Three primary pathways for providing Renewable Electricity
clean electricity:

o Renewable energy;

o Nuclear energy;

Integrated
Portfolio
Scenarios

o Fossil energy with carbon capture, utilization,
and storage (CCUS).

All will likely contribute to clean electricity needs

for the foreseeable future. Nuclear Low-Carbon
Electricity Fossil Electricity

* Energy efficiency improvements in end-use sectors are a critical
contributor to all these pathways

* This multi-pathway approach is consistent with the
Administration’s all-of-the-above energy strategy.

o Inthe electricity sector, this strategy is further defined by the Administration’s
goal of achieving 80% of electricity generation from clean electricity sources by
2035— renewables, nuclear, efficient natural gas, clean coal.



RE Today

RE Capacity Growth 2000-2010 2010 Electricity Generation Mix
160
140 — CSP 0.03% PV 0.08%
% 120 ~ B N B Wind 2.3%
2100 - - - — — - =PV Geothe Ml Nuclear
§ = = o o == Em = m = = = aCSP 0.4% Biomass 20%
g ——— 7 Wind 1.4%
E co BB B EEEEEEREE B Geothermal
% il E EE R EEEEENDN Biomass
= Hydropower Hydropower
Rl - H B HE B E m E E =B 6.2% Natural Gas & Oil
25%
0

O - N M ¥ W © N ® O O
S & © @ © @ © & & & =
S S & © © & & & & ©
N & § &§ § §&§ & & & }§ &
Source: RE Data Book (DOE 2011)

 RE s alow carbon, low air pollutant, low fuel use, low water use, domestic,
sustainable electricity source.

« To what extent can renewable energy technologies commercially available today
meet the U.S. electricity demand over the next several decades?



Summary of Key Analysis Results

Renewable electricity generation from technologies that are commercially
available today, in combination with a more flexible electric system, is more
than adequate to supply 80% of total U.S. electricity generation in 2050 while
meeting electricity demand on an hourly basis in every region of the country.

Increased electric system flexibility is needed to enable electricity supply-
demand balance with high levels of renewable generation, and can come from a
portfolio of supply- and demand-side options, including flexible conventional
generation, grid storage, new transmission, more responsive loads, and changes
in power system operations.

The abundance and diversity of U.S. renewable energy resources can support
multiple combinations of renewable technologies to achieve high levels of
renewable electricity use, and result in deep reductions in electric sector
greenhouse gas emissions and water use.

The direct incremental cost associated with high renewable generation is
comparable to published cost estimates of other clean energy scenarios.
Improvement in the cost and performance of renewable technologies is the
most impactful lever for reducing this incremental cost.



Introduction

RE Futures is an analysis of the U.S. electric sector focused on
2050 that explores

o Whether the U.S. power system can supply electricity to meet customer
demand with high levels of renewable electricity, including variable wind

and solar generation

o Grid integration using models with unprecedented geographic and time
resolution for the contiguous U.S.

o Synergies, constraints, and operational issues associated with a
transformation of the U.S. electric sector




Boundaries

RE Futures does....

RE Futures does not...

Identify commercially available RE
generation technology combinations that
meet up to 80% or more of projected 2050
electricity demand in every hour of the year

Consider policies, new operating
procedures, evolved business models,
market rules, or regulatory frameworks that
could facilitate high levels of RE generation

Identify electric sector characteristics
associated with high levels of RE generation

Fully evaluate power system reliability

Explore a variety of high renewable
electricity generation scenarios

Forecast or predict the evolution of the
electric sector

Estimate associated US electric sector
carbon emissions reductions

Assess optimal pathways to achieve a low-
carbon electricity system

Explore a select number of economic,
environmental and social impacts

Conduct comprehensive cost-benefit
analysis

lllustrate a RE-specific pathway to a clean
electricity future to inform the development
of integrated portfolio scenarios that
include consideration of all technology
pathways and their implications

Provide a definitive assessment of high RE
generation, but does identify areas for
deeper investigation




Renewable Electricity Futures Study
http://www.nrel.gov/analysis/re_futures/

Volume 1 Exploration of High-Penetration Renewable Electricity Futures
Volume 2 Renewable Electricity Generation and Storage Technologies

Volume 3 End-Use Electricity Demand

Volume 4 Bulk Electric Power Systems: Operations and Transmission Planning

U.S. DOE-sponsored collaboration with over 110 contributors from about 35
organizations including national laboratories, industry, universities, and NGOs



RE Futures Modeling Framework
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RE Futures Scenario Framework
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General Assumptions

Energy Efficiency: Most of the scenarios assumed significant adoption of energy
efficiency (including electricity) measures in the residential, commercial, and
industrial sectors.

Transportation: Most of the scenarios assumed a shift of some transportation
energy away from petroleum and towards electricity in the form of plug-in
hybrid or electric vehicles, partially offsetting the electricity efficiency advances
that were considered.

Grid Flexibility: Most scenarios assumed improvements in electric system
operations to enhance flexibility in both electricity generation and end-use
demand, helping to enable more efficient integration of variable-output
renewable electricity generation.

Transmission: Most scenarios expand the transmission infrastructure and
access to existing transmission capacity to support renewable energy
deployment. Distribution-level upgrades were not considered.

Siting and Permitting: Most scenarios assumed project siting and permitting
regimes that allow renewable electricity development and transmission
expansion with standard land-use exclusions.



Scenarios and Sensitivity Cases

Case Conditions

RE-ITI » Costs at Incremental Technology Improvement; only commercial technologies considered
RE-ETI » Costs at Evolutionary Technology Improvement; only commercial technologies considered
RE-NTI » Costs at 2010 levels and frozen through 2050—no technology improvement

Constrained -
Transmission .

Constrained -
Flexibility .

Constrained
Resources .

High-Demand ¢
80% RE .

FE-Cost/Tech

Costs of transmission lines increased 3X

Only allow new transmission lines along existing corridors between BAs
Disallow new intertie capacity

Double the deployment of rooftop PV

Double transmission loss factors

Limit transmission of variable RE to 1,000 miles (all other scenarios assume 2,000-mile limit)
Halve the capacity value of wind and PV

Double the reserves for wind and solar forecast errors
Set required minimum load of coal & biomass plants to 70% (all other scenarios assume 40%)

Cap availability of interruptible load to 2010 levels in all years

Halve available resource base for all RE technologies (except utility-scale and distributed PV)
For biopower, this meant halving the available biomass feedstock

"Business-as-usual” higher growth in electricity demand

50% greater deployment of rooftop PV

Fossil fuel costs 30% higher/lower than base; Fossil Technology advances faster than base



Historical and Projected Demand

B Residential mCommercial BIndustrial BETransportation BEPHEV

6,000
— Projection
5,000 : : ma0?
4,000
< 3,000
.
2,000 -
1,000
0
1970 1980 1990 2000 2010 2020 2030 2040 2050
Year
Sector High-Demand Projection Low-Demand Projection
Residential 2% decline in intensity over 2010 levels  30% decline in intensity over 2010 levels
Commercial 5% increase in intensity over 2010 levels 32% decline in intensity over 2010 levels
Industrial 35% decline in intensity over 2010 levels 50% decline in intensity over 2010 levels
Transportation <3% PHEV penetration 40% of vehicle sales are PEVs
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Electricity Intensity Projections In Range of Other Studies
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Demand-Side Flexibility

Demand-side flexibility increases the potential for RE
to meet electricity requirements

Regional, seasonal, and diurnal variability in electricity
requirements impact the potential for RE generation

o Electricity use projections were converted to 13 regional
hourly system load profiles

Demand-side options considered:

o Thermal (cooling) storage to shift commercial air conditioning loads
based on regional cost supply curves

o Regional demand response (interruptible load) supply curves were
developed to meet operating reserves

o Dynamic scheduling of electric vehicle charging assumed ~40% of
PHEV load was under utility-controlled charging



Renewable Resources
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Renewable Resources and Technologies

Biopower ~100 GW §&
- Stand-alone R
- Cofired with coal

CSP ~37,000 GW ¢ PV~80,000GW

- Trough } With thermal (fOOftOp ~700 GW)
- Tower storage :
- Residential
- Commercial
- Utility-scale
Geothermal ~36 G Wind ~10,000 GW
- Hydrothermal - Onshore

- Offshore fixed-bottom

Geothermal

=4 \ Resource
s f\\ Dark = Higher \\,

~ - Light = Lower
* Only currently commercial technologies were modeled (no EGS, ocean, floating wind) with
incremental and evolutionary improvements.

* RE characteristics, including location (exclusions), technical resource potential, and grid
output (dispatchability), were considered

* Technical resource potential shown, not economic potential
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Biomass Resources
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Million Dry Tonnes

Biomass
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No growth in annual biomass feedstock
availability assumed in RE Futures modeling

Biofuel and other demand for biomass not
considered directly in RE Futures modeling

The assumed feedstock amount (first
column) corresponds roughly to 100 GW of
biopower capacity

Biopower technologies deployed in all 80%
RE scenarios with capacity expansion
limited by feedstock availability

Constrained resources at half the level.
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Solar Technology Cost & Performance
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LCOE 2009$/MWh
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Key Results
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ReEDS Outputs

Baseline scenario 80% RE-ITI scenario
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Renewable generation resources could adequately supply 80% of total U.S.
electricity generation in 2050 while balancing supply and demand
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Generation Under Different Scenarios
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The abundance and diversity of RE resources can support multiple
combinations of RE technologies to provide 80% generation by 2050.
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and Constrained scenarios

Technology deployment depends on scenario assumptions, but in all cases examined, RE
resources exist to compensate for assumed variations in access to transmission, grid
flexibility, resource availability, technology costs, and electricity demand.

Constraints to transmission result in greater PV, offshore wind, and biopower deployment.

Constraints to system flexibility result in greater dispatchable technology deployment, e.g.
storage and CSP with thermal storage.

Constraints to resource accessibility result in greater wind and solar deployment.



Electricity supply and demand can be balanced in every hour of the year

in each region with 80% electricity from renewable resources*
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Installed capacity is sufficient to meet summer afternoon peak demand
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Additional planning and operational challenges include management of
low-demand periods and curtailment of excess electricity
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Operational challenges for high renewable scenarios are most acute
during low-demand periods (e.g., spring)

Greater thermal power plant ramping and cycling

Increased curtailment of excess renewable generation (8-10% of
wind, solar, and hydropower curtailed in 2050)

Storage and demand-side options (e.g. PHEV charging) can help shift
loads to mitigate these challenges, e.g. 100-150 GW of storage and 28-48

GW of interruptible load deployed in 2050 for the (low demand) 80%-by-2050
RE scenarios.
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A more flexible electric power system is needed to enable electricity
supply-demand bhalance with high levels of RE generation

System flexibility can be increased using a broad portfolio of supply- and demand-side
options, including:

* Maintaining sufficient capacity on the system for planning reserves

* Relying on demand-side interruptible load, conventional generators
(particularly natural gas generators), and storage to manage increased
operating requirements

e Mitigating curtailment with storage and controlled charging of electric
vehicles

e Operating the system with greater conventional power plant ramping

* Relying on the dispatchability of certain renewable technologies (e.g.,
biopower, geothermal, CSP with storage and hydropower)

* Leveraging the geospatial diversity of the variable resources to smooth
output ramping

* Transmitting greater amounts of power over longer distances to smooth
electricity demand profiles and meet load with remote generation

* Coordinating bulk power system operations across wider areas.



As RE deployment increases, additional transmission
infrastructure is needed
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In most 80%-by-2050 RE scenarios, 110-190 million MW-miles of new transmission lines are added
AC-DC-AC interties are expanded to allow greater power transfer between asynchronous
interconnects

However, 80% RE is achievable even when transmission is severely constrained (30 million MW-
miles)—greater reliance on local resources (e.g. PV, offshore wind)

Annual transmission and interconnection investments in the 80%-by-2050 RE scenarios range from
BS5.7-8.4/year, which is within the range of recent total investor-owned utility transmission
expenditures

High RE scenarios lead to greater transmission congestion, line usage, and transmission &
distribution losses



Incremental cost associated with high RE generation is comparable to

published cost estimates of other Low Carbon Scenarios

Increase in retail electricity price relative to reference/baseline
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Comparable to incremental cost for clean energy and low carbon scenarios evaluated by
EIA and EPA with similar GHG reduction

Reflects replacement of existing generation plants with new generators and additional
balancing requirements (combustion turbines, storage, and transmission) compared to
baseline scenario (continued evolution of today’s conventional generation system)

Assumptions reflect incremental or evolutionary improvements to currently commercial
RE technologies and do not reflect U.S. DOE activities to further lower these costs



Improvement in cost and performance of RE technologies is the most
impactful lever for reducing the incremental cost

Difference in 2050 Electricity Price Difference in 2050 Electricity Price
Relative to 80% RE-ITI Relative to Baseline (low-demand, ITI)
[Real 2009$/MWh] [Real 2009$/MWHh]
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Cost is less sensitive to assumed electric system constraints (transmission, flexibility,
RE resource access)

Electricity prices in high RE scenarios are largely insensitive to projections for fossil fuel
prices and fossil technology improvements

Lower RE generation levels result in lower incremental prices (e.g., 30% RE-ETI
scenario shows no incremental cost relative to the baseline scenario)

Cost does not reflect savings or investment associated with energy efficiency
assumptions in low-demand Baseline and 80% RE scenarios



No insurmountable long-term constraints to RE technology manufacturing
capacity, materials supply, or labor availability were identified
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 80% RE in 2050 requires adding ~20 GW/yr 2011-2020, ~30 GW/yr 2021-2040,
~40 GW/yr 2041-2050 (higher under High-Demand scenario)

* These installation rates are higher than U.S. capacity additions in 2010 (7 GW)
and 2009 (11 GW) and would place challenges on RE industries

 Recent growth in the U.S. and globally demonstrate the scalability of RE
industries, e.g., U.S. wind industry grew rapidly during the last decade;
worldwide PV production capacity comparable with scenarios

* Better informed siting practices and regulations can reduce industry scale-up
challenges



High RE futures impacts on emissions and land use
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80% RE scenarios lead to:

~80% reduction in 2050 GHG emissions
(combustion-only and life cycle)

~50% reduction in electric sector water use
Gross land use <3% of contiguous U.S. area

Other related potential impacts include:
visual, landscape, noise, habitat, ecosystem
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Biomass 44-88
All Other RE 52-81

Il Other RE, disrupted 4-10
Transmission & Storage 3-19
Total Contiguous U.S. 7,700
Major Roads** 50
Golf Courses ** 10

* USDA 2010, 2012 ** Denholm & Margolis 2008



Future work needed

A comprehensive cost-benefit analysis to better understand the economic
and environmental implications of high renewable electricity futures relative
to today’s electricity system largely based on conventional technologies and
alternative futures in which other sources of clean energy are deployed at
scale

Further investigation of the more complete set of issues around all aspects of
power system reliability because RE Futures only partially explores the
implications of high penetrations of renewable energy for system reliability

Improved understanding of the institutional challenges associated with the
integration of high levels of renewable electricity, including development of
market mechanisms that enable the emergence of flexible technology
solutions and mitigate market risks for a range of stakeholders, including
project developers

Analysis of the role and implications of energy research and development
activities in accelerating technology advancements and in broadening the
portfolio of economically viable future renewable energy supply options and
supply- and demand-side flexibility tools




Summary of Key Analysis Results

Renewable electricity generation from technologies that are commercially
available today, in combination with a more flexible electric system, is more
than adequate to supply 80% of total U.S. electricity generation in 2050 while
meeting electricity demand on an hourly basis in every region of the country.

Increased electric system flexibility is needed to enable electricity supply-
demand balance with high levels of renewable generation, and can come from a
portfolio of supply- and demand-side options, including flexible conventional
generation, grid storage, new transmission, more responsive loads, and changes
in power system operations.

The abundance and diversity of U.S. renewable energy resources can support
multiple combinations of renewable technologies to achieve high levels of
renewable electricity use, and result in deep reductions in greenhouse gas
emissions and water use.

The direct incremental cost associated with high renewable generation is
comparable to published cost estimates of other clean energy scenarios.
Improvement in the cost and performance of renewable technologies is the
most impactful lever for reducing this incremental cost.



A Transformation of the U.S. Electricity System

2010 2050

Biopower Geothermal Hydropower CcspP PV Wind Fossil & Nuclear

A future U.S. electricity system that is largely powered by renewable sources
appears possible at the hourly level. Further work is warranted to investigate this
clean generation pathway. http://rom.nrel.gov/refhighre/dispatch/dispatch.html
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