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B SciDAC

9 Scientific Discovery through Advanced Computing

DOE Office of Science (SC) activity, spanning multiple Office of Science programs
SciDAC Institutes — Provide expertise and software tools in applied mathematics and
computer science to advance scientific discovery through modeling and simulation

— FASTMath — Frameworks, Algorithms, and Scalable Technologies for Mathematics

— QUEST — Quantification of Uncertainty in Extreme Scale Computations

— SUPER — Institute for Sustained Performance, Energy and Resilience

— SDAV - Scalable Data Management, Analysis and Visualization
SciDAC Partnerships — Partner with SC programs to combine CS and applied math
with domain science expertise to target areas of strategic importance

— Fusion Plasma Science (2 projects)

— High Energy Physics (3 projects)

— Nuclear Physics (3 projects)

— Earth Systems (3 projects)

— Chemistry and Materials (6 projects)

http://www.scidac.gov/
R. Laviolette and C. Susut. SciDAC Scientific Computation Application Partnerships Update. ASCAC. August 14, 2012.




Data Challenges in Computational Science

“Very few large scale applications of practical importance are NOT data
intensive.” — Alok Choudhary, IESP, Kobe, Japan, April 2012

Data management and analysis plays
a central role in DOE science mission
Research challenges arise from “the 3 V’s”:

— Volume — The application produces/
consumes terabytes or more data.

— Velocity — An application has much data,
moving very fast. Visualization of coolant flows in a 217-pin nuclear

— Variety - The application integrates data reactor assembly. Visualization depicts how

i certain regions along the exterior (shown in
from a Iarge variety of data sources. yellow and red) are not as well cooled as other

Research challenges also arise from regions.
Complex system architecture demands, Simulation by Paul Fischer and Aleks Obabko
including heterogeneity, hierarchy, and (ANL) using 128K cores on Argonne IBM BG/P

system, Nek5000 code, unstructured mesh of

concurrency over 1B cells.

Visualization by H. Childs (SDAV, LBNL) using Vislt.
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N
Data Volumes in Computational Science
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Dataset Complexity in
Computational Science

Complexity is an artifact of science
problems and codes:

Coupled multi-scale simulations
generate multi-component datasets
consisting of materials, fluid flows,
and particle distributions.

Example: thermal hydraulics coupled
with neutron transport in nuclear
reactor design

Coupled datasets involve
mathematical challenges in coupling
of physics over different meshes and
computer science challenges in
minimizing data movement.

Images from T. Tautges (ANL) (upper left), M. Smith (ANL)
(lower left), and K. Smith (MIT) (right).

Model complexity:

Spectral element mesh (top) for
thermal hydraulics computation
coupled with finite element
mesh (bottom) for neutronics
calculation.

Scale complexity:
Spatial range from the
reactor core in meters
to fuel pellets in
millimeters.



Data, Velocity, and System Architectures



Average Internal Drive Access Rate (MBytes/sec)

Data Velocity in Computational Science

Data from computational science applications comes in bursts that must be
absorbed quickly to maintain high system utilization. Storage systems must
serve unprecedented numbers of clients and incorporate massive numbers of

devices to meet requirements.
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= Trajectory of disk access
rate improvements has led
to more disks at each HPC
system generation

" Projections indicate disk-
only storage for exascale
would require ~175K disks

= NVRAM helps, but analysis
approaches must adapt as
well



An Example Leadership System Architecture

Mira IBM Blue Gene/Q System

QDR 1B
| port per
analysis
node

Tukey Analysis
System

96 Analysis Nodes
i E (1,536 CPU Cores,
192 Fermi GPUs,
| 49,152 Compute - QDR 96 TB local disk)
Nodes . Infiniband
| (786,432 Cores) 38410 L Federated
Nodes Switch
: - |6 Storage
. Couplets
: E (DataDirect
— — SFAI2KE)
""""""""""""""""""""" | 560 x 3TB HDD
32 x 200GB SSD

BG/Q Optical QDR IB QDR IB

2 x 16Gbit/sec 32 Gbit/sec 16 x ports per

per 1/O node per I/O node storage couplet

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility



Mira IBM Blue Gene/Q System

QDR 1B
| port per
analysis
node

: 96 Analysis Nodes
i 1 (1,536 CPU Cores,
192 Fermi GPUs,
| 49,152 Compute - Q 96 TB local disk)
Nodes - Infinittd
| (786,432 Cores) 38410 L Fedelbd
! Nodes [ Swi
- |6 Storage
Couplets
: (DataDirect
— — SFAI2KE)
""""""""""""""""""""" | 560 x 3TB HDD
32 x 200GB SSD
BG/Q Optical QDR IB QDR IB
2 x 16Gbit/sec 32 Gbit/sec 16 x ports per
per 1/O node per I/O node storage couplet

Analyzing Data: Traditional Post-Processing

Tukey Analysis
System

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility

Typically analysis
is performed on a
separate cluster,
after simulation
has written to data
to disk.



Analyzing Data: Co-Analysis

Mira IBM Blue

Gene/Q System

QDR 1B
| port per
analysis
node

Tukey Analysis
System

96 Analysis Nodes

(1,536 CPU Cores,
192 Fermi GPUs,
49,152 Compu 53 96 TB local disk)
Nodes . Infiniband
| (786,432 Cores) 38410 | Federated
Nodes |- Switch
: - |6 Storage
. Couplets
: E (DataDirect
— — SFAI2KE)
""""""""""""""""""""" | 560 x 3TB HDD
32 x 200GB SSD
BG/Q Optical QDR IB QDR IB
2 x 16Gbit/sec 32 Gbit/sec 16 x ports per
per 1/O node per I/O node storage couplet

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility

Co-analysis
bypasses storage
and processes
data while
simulation runs.
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Analyzing Data: In Situ Analysis

Mira IBM Blue Gene/Q System

QDR 1B
| port per
analysis
node

Tukey Analysis
System

; 96 Analysis Nodes
i (1,536 CPU Cores,
192 Fermi GPUs,
|| 49,152 Compute QDR 96 TB local disk)
Nodes Infiniband
|| (786,432 Cores) 384 1/0 Federated
Nodes Switch
: |6 Storage
Couplets
: (DataDirect
— SFA12KE)
""""""""""""""""""""" 560 x 3TB HDD
32 x 200GB SSD
BG/Q Optical QDR IB QDR IB
“In situ” analysis 2 x 16Gbit/sec 32 Gbit/sec 16 x ports per
operates on data before per 1/O node per I/O node storage couplet

it leaves the compute
nodes.

High-level diagram of 10 Pflop IBM Blue Gene/Q system at Argonne Leadership Computing Facility



Exascale Systems: Potential Architecture

Systems 2000 2018

System Peak

Power

System Memory
Node Compute
Node Memory BW
Node Concurrency
Total Node Interconnect BW
System Size (Nodes)
Total Concurrency
Storage

1/0

MTTI

2 Pflop/sec

6 Mwatt

0.3 Pbytes

125 Gflop/sec
25 Ghytes/sec
12

3.5 Gbytes/sec
18,700
225,000

15 Pbytes

0.2 Thytes/sec
Days

1 Eflop/sec

20 Mwatt

32-64 Pbytes
1-15 Tflop/sec
2-4 Tbytes/sec
0(1-10K)
200-400 Gbytes/sec
0(100,000-1M)
O(1 billion)
500-1000 Pbytes
60 Tbhytes/sec
O(1 day)

O(1000)

0(100)
0(10-100)
0(100)
0(100-1000)
0(100)
0(10-100)
0(10,000)
0(10-100)
0(100)

From J. Dongarra, “Impact of Architecture and Technology for Extreme Scale on Software and Algorithm Design,”
Cross-cutting Technologies for Computing at the Exascale, February 2-5, 2010.
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The SDAYV Institute
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Goal is to assist application scientists in using state-of-the-art data management,
analysis, and visualization techniques to make new science discoveries:

— Data Management — infrastructure that captures the data models used in science
codes, efficiently moves, indexes, and compresses this data, enables query of
scientific datasets, and provides the underpinnings of in situ data analysis

— Data Analysis — application-driven, architecture-aware techniques for performing
in situ data analysis, filtering, and reduction to optimize downstream |/O and
prepare for in-depth post-processing analysis and visualization

— Data Visualization — exploratory visualization techniques that support
understanding ensembles of results, methods of quantifying uncertainty, and
identifying and understanding features in multi- scale, multi-physics datasets

= Funded by the DOE Office of Science Advanced Scientific Computing Research
Program

= Lead by Arie Shoshani (LBNL)
= Focus is on users of largest DOE/ASCR computational resources

= http://www.sdav-scidac.org
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Improving Aircraft Designs

= Goalis to reduce fuel consumption,
noise, and drag in commercial aircraft:

— Redesigning the vertical tail of a commercial
jet could reduce jet fuel use by 0.5%, resulting
in annual savings of $300 million.

The conventional fix-wing aircraft
control surface design is over a
century old. New control methods
are being developed that improve
efficiency and enable new aircraft
designs.

— One new aircraft control method employs
synthetic jets; understanding the behavior
(e.g., frequency, amplitude, location) is critical
for future aircraft wing design
=  Synthetic jet simulations are conducted
using the PHASTA CFD solver and are Image by Piotr Jaworski, released under GNU Free
] ] ] Documentation License.
being correlated with experimental data

— Collaboration between Univ. of Colorado, Boulder, Rensselaer Polytechnic
Institute, and Boeing

— Adaptive unstructured mesh code, has scaled to 4.3 billion mesh elements and
160K cores on ALCF Blue Gene/P

Thanks to V. Vishwanath (ANL) for providing this material.
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Streamlining Data Movement in Airflow Simulation

=  PHASTA CFD simulations produce as much as ~200 GB per time step

— Rate of data movement off compute nodes determines how much data the
scientists are able to analyze

=  GLEAN is a flexible and extensible framework for simulation-time data

movement and analysis
— Accelerating 1/0 via topology awareness, asynchronous 1/0O
— Enabling in situ analysis and co-analysis

1000

Throughput in GiBps

GLEAN To BG/P ION Strong scaling performance for 1GB
Z:ﬂ‘ﬁ"c‘;icfvzf/’; L:“;G/P . data movement off ALCF Intrepid
100 - Blue Gene/P compute nodes.
GLEAN provides 30-fold
0 improvement over POSIX |/0O at

large scale. Strong scaling is critical
as we move towards systems with
increased core counts.

—_

0 {
256 512 1024 2048 4096 8192 16384 32768 65536
Number of BG/P Cores Thanks to V. Vishwanath (ANL) for providing this material.
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Observing Simulated Synthetic Jet Behavior

. , Cut plane through
- mw& ~" A ~ synthetic jet (left) and

: isosurface of vertical
velocity (right) colored
by velocity (both for 3.3
billion element mesh).
Analysis performed with
ParaView.

Thanks to K. Jansen (UC Boulder)
for these images.

velocity Magnitude
15
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= Using GLEAN, scientists are able to use co-analysis to observe simulation
behavior at run time and avoid storage bottlenecks

— In co-analysis, data is moved from compute to analysis resources without first
being stored on disk

— Reduces storage requirements, overlaps analysis with simulation, and achieves
very data throughput (48 GiBps)

= This enables the scientists to better understand the temporal characteristics
of the synthetic jet

— Cost of analyzing a timestep is much lower, so scientists can view results at a
higher temporal fidelity than was feasible before (approx. every 10 timesteps)
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Understanding the Madden-Julian Oscillation (MJO)

MJO is a 30-60 day oscillation of enhanced and suppressed rainfall near the
Indian and western Pacific Oceans

— MJO can be thought of as a wavefront indicating how the cloud system is moving
— Understanding the phenomenon helps explain tropical weather variations
— Also related to summer precipitation patterns in North America

Simulation performed by R. Leung and S. Hagos (PNNL) using ARW-WRF3.1
— 2700 x 600 x 27 (vertical) curvilinear mesh

— 480 timesteps representing 120 days (multiple iterations of phenomenon)
— 3GB per timestep

The image shows a rendering

of clouds on a virtual globe
interface developed by SDAV
researchers at Ohio State
University, in collaboration with P.

C. Wong, S. Hagos, and R. Leung
(PNNL).

S. Hagos, L. R. Leung, and J. Dudhia. Thermodynamics of the Madden-Julian oscillation in a regional
model with constrained moisture. Journal of Atmospheric Sciences, 68:1974-1989, 2011.
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Interactively Exploring the MJO Phenomenon

SDAV members H. Shen and T. Lee (OSU), with collaborator P.C. Wong (PNNL)
developed an interface to assist scientists in identifying and exploring the
MJO phenomenon in simulations.
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A typical method of viewing water vapor mixing ratio is
via a timeline view, with time on the Y axis and longitude

on the X axis (known as a Hovmoller diagram). Heatmap views are generated on

demand when user selects a
longitude. Heatmap shows water
vapor mixing ratio by altitude

(Y axis) over time (X axis).

Orange line tracks highest water vapor mixing ratio over
time (MJO path), while red box selects an interval of time
for visualization on the right. Green lines show heatmap
locations.

Enable Al Opbons
_L sable All Opbons

W Status Bar

_Reset View

.

GO ):('\' eartt

Red arrows indicate direction of
Thanks to H. Shen and T. Lee (OSU) cloud system movement in the

for providing this material. selected time period.

Builds off the widely-available
Google Earth platform, can be

embedded in web pages. .



Understanding How a Laser Pulse Propagates
Through a Hydrogen Plasma

= VORPAL code used to simulate laser wakefield particle accelerator
— 3D simulation
— 30 timesteps
— 90 million particles per timestep, ~5 Gbytes of data per timestep

= Questions:
— Which particles become accelerated? How are they accelerated?
— How did the beam form? How did it evolve?

= Data management, analysis, and visualization:
— Data model support — HDF5, H5Part to store data with appropriate metadata

— Indexing — FastBit to enable quick identification of particles of interest,
associate particles between timesteps

— Visualization — Parallel coordinates view to help user select particles, Vislt as
deployment vehicle

Rubel et al. High performance multivariate visual data exploration for extremely large data. SC08. November, 2008.
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Beam Selection

Parallel coordinates view of t =12

= @Grey particles represent initial selection
(px > 2*10°)

= Red particles represent “focus particles’

in first wake period following pulse
(px > 4.856*10%°) && (x > 5.649*10)

)

Volume rendering of plasma density with
focus particles included in red (t = 12)

= Helps locate beam within wake

Thanks to E. Wes Bethel (LBNL) for providing this material.

pX X
(x10"9)  (x10"-6)

py
(x109)

y pz
(x10°6)  (x10°9)
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Tracing Particles
over Time

Tracing particles back to t =9 and
forward to t = 14 allows scientist to see

acceleration over time:

= Heatmap shows particles constantly
accelerated over time (increase in
px, left to right).

= Grey particles show initial selection
(for reference).

PX

&

o

= y 4.053e+08 4.367e+10 8.775e+10
2 Ve ¥ 2.163e+10 6.571e+10
<C : .

>.

o

More recent work shows:

= Particles start out slow (blue, left),
undergo acceleration (reds), then
slow again as the plasma wave
outruns them (blue, right).

= Spiral structure shows particles

. . . 1500 ", 0 ©

oscillating transversely in the /g\s
. . o v -400,”" \S
focusing field (new science). 1600 o

Thanks to E. Wes Bethel (LBNL) for providing this material.
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SDAV Technology Use in Leadership Applications

Application

Astrophysics
Astrophysics
Astrophysics
Astrophysics
Biology
Climate

Combustion

Combustion
Combustion
Cosmology
Fusion
Fusion
Fusion
Plasma
Nuclear

b

Code

Chimera
FLASH
Maestro
Enzo
Nektar
POP
S3D

Boxlib
Nek5000
HACC
GTC

XGC
GTC-P
VPIC
Nek5000

Contact

T. Mezzacappa
D. Lamb

J. Bell

M. Norman

G. Karniadakis
P.Jones

J. Chen

J. Bell

C. Frouzakis
S. Habib

Z. Lin

C.S. Chang
W. Tang

B. Daughton
P. Fischer

Allocation
(M node hours)

60
80
50
35
50
110
60

60
150
150

35

50

58

30
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SDAV Technologies

ADIQOS, Vislt, Ultravis-V

PnetCDF, GLEAN, ROMIO, Vislt, VTK
Vislt

ParaView, Vislt

ParaView

PnetCDF, ParaView, ROMIO

ADIOS, Dataspaces, Ultravis-V, Ultravis-P,
ViSUS IDX, Topologika

Vislt, ADIOS, Topologika

Vislt

ParaView, ROMIO, Ultravis-P

ADIOS, DataTap, FastBit, Ultravis-V

ADIOS, Dataspaces, FastBit, Ultravis-V, VTK
ADIOS, Ultravis-V, Ultravis-P

PnetCDF, ParaView, ROMIO

ROMIOQ, Vislt
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Final Comments: Accomplishing Our Goal

A mix of activities contribute to the success:

= Community Engagement — Actively engaging application teams running
on leading DOE computing systems, our sibling Institutes, and DOE
computing facility personnel over the lifetime of the Institute.

= Technology Deployment — Working with application scientists so that they
can use state of the art tools and techniques to support their needs in
data management, analysis, and visualization tasks.

= Research Integration — Incorporating ASCR basic research results into our
portfolio and developing new technologies as needed to meet the needs
of application scientists over the next five years.

= Software Support — Performing quality software deployment,
maintenance, and support to ensure the success of our tools.

Computational science applications are data intensive. SDAV is assisting
scientists in using state-of-the-art tools and techniques to manage this data
and glean new science discoveries.
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