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§  DOE	
  Office	
  of	
  Science	
  (SC)	
  ac4vity,	
  spanning	
  mul4ple	
  Office	
  of	
  Science	
  programs	
  
§  SciDAC	
  Ins4tutes	
  –	
  Provide	
  exper4se	
  and	
  soMware	
  tools	
  in	
  applied	
  mathema4cs	
  and	
  

computer	
  science	
  to	
  advance	
  scien4fic	
  discovery	
  through	
  modeling	
  and	
  simula4on	
  
–  FASTMath	
  –	
  Frameworks,	
  Algorithms,	
  and	
  Scalable	
  Technologies	
  for	
  Mathema4cs	
  
–  QUEST	
  –	
  Quan4fica4on	
  of	
  Uncertainty	
  in	
  Extreme	
  Scale	
  Computa4ons	
  
–  SUPER	
  –	
  Ins4tute	
  for	
  Sustained	
  Performance,	
  Energy	
  and	
  Resilience	
  
–  SDAV	
  –	
  Scalable	
  Data	
  Management,	
  Analysis	
  and	
  Visualiza8on	
  

§  SciDAC	
  Partnerships	
  –	
  Partner	
  with	
  SC	
  programs	
  to	
  combine	
  CS	
  and	
  applied	
  math	
  
with	
  domain	
  science	
  exper4se	
  to	
  target	
  areas	
  of	
  strategic	
  importance	
  
–  Fusion	
  Plasma	
  Science	
  (2	
  projects)	
  
–  High	
  Energy	
  Physics	
  (3	
  projects)	
  
–  Nuclear	
  Physics	
  (3	
  projects)	
  
–  Earth	
  Systems	
  (3	
  projects)	
  
–  Chemistry	
  and	
  Materials	
  (6	
  projects)	
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hZp://www.scidac.gov/	
  
R.	
  LavioleZe	
  and	
  C.	
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  Applica4on	
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  ASCAC.	
  August	
  14,	
  2012.	
  	
  



Data Challenges in Computational Science 

§  Data	
  management	
  and	
  analysis	
  plays	
  	
  
a	
  central	
  role	
  in	
  DOE	
  science	
  mission	
  

§  Research	
  challenges	
  arise	
  from	
  “the	
  3	
  V’s”:	
  
–  Volume	
  –	
  The	
  applica4on	
  produces/

consumes	
  terabytes	
  or	
  more	
  data.	
  
–  Velocity	
  –	
  An	
  applica4on	
  has	
  much	
  data,	
  

moving	
  very	
  fast.	
  
–  Variety	
  –	
  The	
  applica4on	
  integrates	
  data	
  

from	
  a	
  large	
  variety	
  of	
  data	
  sources.	
  

§  Research	
  challenges	
  also	
  arise	
  from	
  
complex	
  system	
  architecture	
  demands,	
  
including	
  heterogeneity,	
  hierarchy,	
  and	
  
concurrency	
  

3	
  

“Very	
  few	
  large	
  scale	
  applica8ons	
  of	
  prac8cal	
  importance	
  are	
  NOT	
  data	
  
intensive.”	
  –	
  Alok	
  Choudhary,	
  IESP,	
  Kobe,	
  Japan,	
  April	
  2012	
  

Visualiza4on	
  of	
  coolant	
  flows	
  in	
  a	
  217-­‐pin	
  nuclear	
  
reactor	
  assembly.	
  Visualiza4on	
  depicts	
  how	
  
certain	
  regions	
  along	
  the	
  exterior	
  (shown	
  in	
  
yellow	
  and	
  red)	
  are	
  not	
  as	
  well	
  cooled	
  as	
  other	
  
regions.	
  	
  
	
  
Simula4on	
  by	
  Paul	
  Fischer	
  and	
  Aleks	
  Obabko	
  
(ANL)	
  using	
  128K	
  cores	
  on	
  Argonne	
  IBM	
  BG/P	
  
system,	
  Nek5000	
  code,	
  unstructured	
  mesh	
  of	
  
over	
  1B	
  cells.	
  
	
  
Visualiza4on	
  by	
  H.	
  Childs	
  (SDAV,	
  LBNL)	
  using	
  VisIt.	
  



Data Volumes in Computational Science 

PI	
   Project	
  

On-­‐line	
  
Data	
  
(TBytes)	
  

Off-­‐line	
  
Data	
  
(TBytes)	
  

Lamb	
   Supernovae	
  Astrophysics	
   100	
   400	
  
Khokhlov	
   Combus4on	
  in	
  Reac4ve	
  

Gases	
  
1	
   17	
  

Lester	
   CO2	
  Absorp4on	
   5	
   15	
  
Jordan	
   Seismic	
  Hazard	
  Analysis	
   600	
   100	
  
Washington	
   Climate	
  Science	
   200	
   750	
  
Voth	
   Energy	
  Storage	
  Materials	
   10	
   10	
  
Vashista	
   Stress	
  Corrosion	
  Cracking	
   12	
   72	
  
Vary	
   Nuclear	
  Structure	
  and	
  

Reac4ons	
  
6	
   30	
  

Fischer	
   Reactor	
  Thermal	
  Hydraulic	
  
Modeling	
  

100	
   100	
  

Hinkel	
   Laser-­‐Plasma	
  Interac4ons	
   60	
   60	
  
Elghobashi	
   Vaporizing	
  Droplets	
  in	
  a	
  

Turbulent	
  Flow	
  
2	
   4	
  

Data	
  requirements	
  for	
  select	
  2012	
  INCITE	
  
applica8ons	
  at	
  ALCF	
  (BG/P)	
  

Top	
  10	
  data	
  producer/consumers	
  
instrumented	
  with	
  Darshan	
  over	
  the	
  
month	
  of	
  July,	
  2011.	
  Surprisingly,	
  three	
  of	
  
the	
  top	
  producer/consumers	
  almost	
  
exclusively	
  read	
  exis4ng	
  data.	
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Dataset Complexity in 
Computational Science 
 Complexity	
  is	
  an	
  ar4fact	
  of	
  science	
  

problems	
  and	
  codes:	
  
§  Coupled	
  mul4-­‐scale	
  simula4ons	
  

generate	
  mul4-­‐component	
  datasets	
  
consis4ng	
  of	
  materials,	
  fluid	
  flows,	
  
and	
  par4cle	
  distribu4ons.	
  

§  Example:	
  thermal	
  hydraulics	
  coupled	
  
with	
  neutron	
  transport	
  in	
  nuclear	
  
reactor	
  design	
  	
  

§  Coupled	
  datasets	
  involve	
  
mathema4cal	
  challenges	
  in	
  coupling	
  
of	
  physics	
  over	
  different	
  meshes	
  and	
  
computer	
  science	
  challenges	
  in	
  
minimizing	
  data	
  movement.	
  

Aneurysm 

Right Interior 
Carotid Artery 

Platelet 
Aggregation 

Model	
  complexity:	
  
Spectral	
  element	
  mesh	
  (top)	
  for	
  
thermal	
  hydraulics	
  computa4on	
  
coupled	
  with	
  finite	
  element	
  
mesh	
  (boZom)	
  for	
  neutronics	
  
calcula4on.	
  

Scale	
  complexity:	
  
Spa4al	
  range	
  from	
  the	
  
reactor	
  core	
  in	
  meters	
  
to	
  fuel	
  pellets	
  in	
  
millimeters.	
  

5	
  

Images	
  from	
  T.	
  Tautges	
  (ANL)	
  (upper	
  leM),	
  M.	
  Smith	
  (ANL)	
  
(lower	
  leM),	
  and	
  K.	
  Smith	
  (MIT)	
  (right).	
  



Data, Velocity, and System Architectures 
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Data Velocity in Computational Science 

Data	
  from	
  computa4onal	
  science	
  applica4ons	
  comes	
  in	
  bursts	
  that	
  must	
  be	
  
absorbed	
  quickly	
  to	
  maintain	
  high	
  system	
  u4liza4on.	
  Storage	
  systems	
  must	
  
serve	
  unprecedented	
  numbers	
  of	
  clients	
  and	
  incorporate	
  massive	
  numbers	
  of	
  
devices	
  to	
  meet	
  requirements.	
  	
  

§  Trajectory	
  of	
  disk	
  access	
  
rate	
  improvements	
  has	
  led	
  
to	
  more	
  disks	
  at	
  each	
  HPC	
  
system	
  genera4on	
  

§  Projec4ons	
  indicate	
  disk-­‐
only	
  storage	
  for	
  exascale	
  
would	
  require	
  ~175K	
  disks	
  

§  NVRAM	
  helps,	
  but	
  analysis	
  
approaches	
  must	
  adapt	
  as	
  
well	
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










 


















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
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











An Example Leadership System Architecture 
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High-­‐level	
  diagram	
  of	
  10	
  Pflop	
  IBM	
  Blue	
  Gene/Q	
  system	
  at	
  Argonne	
  Leadership	
  Compu4ng	
  Facility	
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Analyzing Data: Traditional Post-Processing 
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Typically	
  analysis	
  
is	
  performed	
  on	
  a	
  
separate	
  cluster,	
  
aUer	
  simula8on	
  
has	
  wriWen	
  to	
  data	
  
to	
  disk.	
  

High-­‐level	
  diagram	
  of	
  10	
  Pflop	
  IBM	
  Blue	
  Gene/Q	
  system	
  at	
  Argonne	
  Leadership	
  Compu4ng	
  Facility	
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






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
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
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

Analyzing Data: Co-Analysis 
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Co-­‐analysis	
  
bypasses	
  storage	
  
and	
  processes	
  
data	
  while	
  
simula8on	
  runs.	
  

High-­‐level	
  diagram	
  of	
  10	
  Pflop	
  IBM	
  Blue	
  Gene/Q	
  system	
  at	
  Argonne	
  Leadership	
  Compu4ng	
  Facility	
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


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





















Analyzing Data: In Situ Analysis 
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“In	
  situ”	
  analysis	
  
operates	
  on	
  data	
  before	
  
it	
  leaves	
  the	
  compute	
  
nodes.	
  

High-­‐level	
  diagram	
  of	
  10	
  Pflop	
  IBM	
  Blue	
  Gene/Q	
  system	
  at	
  Argonne	
  Leadership	
  Compu4ng	
  Facility	
  



Exascale Systems: Potential Architecture 

Systems	
   2009	
   2018*	
   Difference	
  

System	
  Peak	
   2	
  Pflop/sec	
   1	
  Eflop/sec	
   O(1000)	
  

Power	
   6	
  MwaZ	
   20	
  MwaZ	
  

System	
  Memory	
   0.3	
  Pbytes	
   32-­‐64	
  Pbytes	
   O(100)	
  

Node	
  Compute	
   125	
  Gflop/sec	
   1-­‐15	
  Tflop/sec	
   O(10-­‐100)	
  

Node	
  Memory	
  BW	
   25	
  Gbytes/sec	
   2-­‐4	
  Tbytes/sec	
   O(100)	
  

Node	
  Concurrency	
   12	
   O(1-­‐10K)	
   O(100-­‐1000)	
  

Total	
  Node	
  Interconnect	
  BW	
   3.5	
  Gbytes/sec	
   200-­‐400	
  Gbytes/sec	
   O(100)	
  

System	
  Size	
  (Nodes)	
   18,700	
   O(100,000-­‐1M)	
   O(10-­‐100)	
  

Total	
  Concurrency	
   225,000	
   O(1	
  billion)	
   O(10,000)	
  

Storage	
   15	
  Pbytes	
   500-­‐1000	
  Pbytes	
   O(10-­‐100)	
  

I/O	
   0.2	
  Tbytes/sec	
   60	
  Tbytes/sec	
   O(100)	
  

MTTI	
   Days	
   O(1	
  day)	
  

From	
  J.	
  Dongarra,	
  “Impact	
  of	
  Architecture	
  and	
  Technology	
  for	
  Extreme	
  Scale	
  on	
  SoMware	
  and	
  Algorithm	
  Design,”	
  
Cross-­‐cuqng	
  Technologies	
  for	
  Compu4ng	
  at	
  the	
  Exascale,	
  February	
  2-­‐5,	
  2010.	
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The SDAV Institute 
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Goal	
  is	
  to	
  assist	
  applica4on	
  scien4sts	
  in	
  using	
  state-­‐of-­‐the-­‐art	
  data	
  management,	
  
analysis,	
  and	
  visualiza4on	
  techniques	
  to	
  make	
  new	
  science	
  discoveries:	
  

–  Data	
  Management	
  –	
  infrastructure	
  that	
  captures	
  the	
  data	
  models	
  used	
  in	
  science	
  
codes,	
  efficiently	
  moves,	
  indexes,	
  and	
  compresses	
  this	
  data,	
  enables	
  query	
  of	
  
scien4fic	
  datasets,	
  and	
  provides	
  the	
  underpinnings	
  of	
  in	
  situ	
  data	
  analysis	
  	
  

–  Data	
  Analysis	
  –	
  applica4on-­‐driven,	
  architecture-­‐aware	
  techniques	
  for	
  performing	
  
in	
  situ	
  data	
  analysis,	
  filtering,	
  and	
  reduc4on	
  to	
  op4mize	
  downstream	
  I/O	
  and	
  
prepare	
  for	
  in-­‐depth	
  post-­‐processing	
  analysis	
  and	
  visualiza4on	
  	
  

–  Data	
  Visualiza8on	
  –	
  exploratory	
  visualiza4on	
  techniques	
  that	
  support	
  
understanding	
  ensembles	
  of	
  results,	
  methods	
  of	
  quan4fying	
  uncertainty,	
  and	
  
iden4fying	
  and	
  understanding	
  features	
  in	
  mul4-­‐	
  scale,	
  mul4-­‐physics	
  datasets	
  	
  

§  Funded	
  by	
  the	
  DOE	
  Office	
  of	
  Science	
  Advanced	
  Scien4fic	
  Compu4ng	
  Research	
  
Program	
  

§  Lead	
  by	
  Arie	
  Shoshani	
  (LBNL)	
  
§  Focus	
  is	
  on	
  users	
  of	
  largest	
  DOE/ASCR	
  computa4onal	
  resources	
  
§  hZp://www.sdav-­‐scidac.org	
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Improving Aircraft Designs 
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The	
  conven4onal	
  fix-­‐wing	
  aircraM	
  
control	
  surface	
  design	
  is	
  over	
  a	
  
century	
  old.	
  New	
  control	
  methods	
  
are	
  being	
  developed	
  that	
  improve	
  
efficiency	
  and	
  enable	
  new	
  aircraM	
  
designs.	
  
	
  
Image	
  by	
  Piotr	
  Jaworski,	
  released	
  under	
  GNU	
  Free	
  
Documenta4on	
  License.	
  

§  Goal	
  is	
  to	
  reduce	
  fuel	
  consump4on,	
  
noise,	
  and	
  drag	
  in	
  commercial	
  aircraM:	
  
–  Redesigning	
  the	
  ver4cal	
  tail	
  of	
  a	
  commercial	
  	
  

jet	
  could	
  reduce	
  jet	
  fuel	
  use	
  by	
  0.5%,	
  resul4ng	
  	
  
in	
  annual	
  savings	
  of	
  $300	
  million.	
  

–  One	
  new	
  aircraM	
  control	
  method	
  employs	
  
synthe'c	
  jets;	
  understanding	
  the	
  behavior	
  
(e.g.,	
  frequency,	
  amplitude,	
  loca4on)	
  is	
  cri4cal	
  	
  
for	
  future	
  aircraM	
  wing	
  design	
  

§  Synthe4c	
  jet	
  simula4ons	
  are	
  conducted	
  
using	
  the	
  PHASTA	
  CFD	
  solver	
  and	
  are	
  
being	
  correlated	
  with	
  experimental	
  data	
  
–  Collabora4on	
  between	
  Univ.	
  of	
  Colorado,	
  Boulder,	
  Rensselaer	
  Polytechnic	
  

Ins4tute,	
  and	
  Boeing	
  
–  Adap4ve	
  unstructured	
  mesh	
  code,	
  has	
  scaled	
  to	
  4.3	
  billion	
  mesh	
  elements	
  and	
  

160K	
  cores	
  on	
  ALCF	
  Blue	
  Gene/P	
  

Thanks	
  to	
  V.	
  Vishwanath	
  (ANL)	
  for	
  providing	
  this	
  material.	
  



Streamlining Data Movement in Airflow Simulation 

§  PHASTA	
  CFD	
  simula4ons	
  produce	
  as	
  much	
  as	
  ~200	
  GB	
  per	
  4me	
  step	
  
–  Rate	
  of	
  data	
  movement	
  off	
  compute	
  nodes	
  determines	
  how	
  much	
  data	
  the	
  

scien4sts	
  are	
  able	
  to	
  analyze	
  

§  GLEAN	
  is	
  a	
  flexible	
  and	
  extensible	
  framework	
  for	
  simula4on-­‐4me	
  data	
  
movement	
  and	
  analysis	
  
–  Accelera4ng	
  I/O	
  via	
  topology	
  awareness,	
  asynchronous	
  I/O	
  
–  Enabling	
  in	
  situ	
  analysis	
  and	
  co-­‐analysis	
  

16	
  

Strong	
  scaling	
  performance	
  for	
  1GB	
  
data	
  movement	
  off	
  ALCF	
  Intrepid	
  
Blue	
  Gene/P	
  compute	
  nodes.	
  
GLEAN	
  provides	
  30-­‐fold	
  
improvement	
  over	
  POSIX	
  I/O	
  at	
  
large	
  scale.	
  Strong	
  scaling	
  is	
  cri4cal	
  
as	
  we	
  move	
  towards	
  systems	
  with	
  
increased	
  core	
  counts.	
  
	
  

Thanks	
  to	
  V.	
  Vishwanath	
  (ANL)	
  for	
  providing	
  this	
  material.	
  



Observing Simulated Synthetic Jet Behavior 

§  Using	
  GLEAN,	
  scien4sts	
  are	
  able	
  to	
  use	
  co-­‐analysis	
  to	
  observe	
  simula4on	
  
behavior	
  at	
  run	
  4me	
  and	
  avoid	
  storage	
  boZlenecks	
  
–  In	
  co-­‐analysis,	
  data	
  is	
  moved	
  from	
  compute	
  to	
  analysis	
  resources	
  without	
  first	
  

being	
  stored	
  on	
  disk	
  
–  Reduces	
  storage	
  requirements,	
  overlaps	
  analysis	
  with	
  simula4on,	
  and	
  achieves	
  

very	
  data	
  throughput	
  (48	
  GiBps)	
  

§  This	
  enables	
  the	
  scien4sts	
  to	
  beZer	
  understand	
  the	
  temporal	
  characteris4cs	
  
of	
  the	
  synthe4c	
  jet	
  
–  Cost	
  of	
  analyzing	
  a	
  4mestep	
  is	
  much	
  lower,	
  so	
  scien4sts	
  can	
  view	
  results	
  at	
  a	
  

higher	
  temporal	
  fidelity	
  than	
  was	
  feasible	
  before	
  (approx.	
  every	
  10	
  4mesteps)	
  
17	
  

Cut	
  plane	
  through	
  
synthe4c	
  jet	
  (leM)	
  and	
  
isosurface	
  of	
  ver4cal	
  
velocity	
  (right)	
  colored	
  
by	
  velocity	
  (both	
  for	
  3.3	
  
billion	
  element	
  mesh).	
  
Analysis	
  performed	
  with	
  
ParaView.	
  
Thanks	
  to	
  K.	
  Jansen	
  (UC	
  Boulder)	
  
for	
  these	
  images.	
  



Understanding the Madden-Julian Oscillation (MJO) 

§  MJO	
  is	
  a	
  30-­‐60	
  day	
  oscilla4on	
  of	
  enhanced	
  and	
  suppressed	
  rainfall	
  near	
  the	
  
Indian	
  and	
  western	
  Pacific	
  Oceans	
  
–  MJO	
  can	
  be	
  thought	
  of	
  as	
  a	
  wavefront	
  indica4ng	
  how	
  the	
  cloud	
  system	
  is	
  moving	
  
–  Understanding	
  the	
  phenomenon	
  helps	
  explain	
  tropical	
  weather	
  varia4ons	
  
–  Also	
  related	
  to	
  summer	
  precipita4on	
  paZerns	
  in	
  North	
  America	
  

§  Simula4on	
  performed	
  by	
  R.	
  Leung	
  and	
  S.	
  Hagos	
  (PNNL)	
  using	
  ARW-­‐WRF3.1	
  
–  2700	
  x	
  600	
  x	
  27	
  (ver4cal)	
  curvilinear	
  mesh	
  
–  480	
  4mesteps	
  represen4ng	
  120	
  days	
  (mul4ple	
  itera4ons	
  of	
  phenomenon)	
  
–  3GB	
  per	
  4mestep	
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The	
  image	
  shows	
  a	
  rendering	
  	
  
of	
  clouds	
  on	
  a	
  virtual	
  globe	
  
interface	
  developed	
  by	
  SDAV	
  
researchers	
  at	
  Ohio	
  State	
  
University,	
  in	
  collabora4on	
  with	
  P.	
  
C.	
  Wong,	
  S.	
  Hagos,	
  and	
  R.	
  Leung	
  
(PNNL).	
  

S.	
  Hagos,	
  L.	
  R.	
  Leung,	
  and	
  J.	
  Dudhia.	
  Thermodynamics	
  of	
  the	
  Madden-­‐Julian	
  oscilla4on	
  in	
  a	
  regional	
  
model	
  with	
  constrained	
  moisture.	
  Journal	
  of	
  Atmospheric	
  Sciences,	
  68:1974–1989,	
  2011.	
  



Interactively Exploring the MJO Phenomenon 
SDAV	
  members	
  H.	
  Shen	
  and	
  T.	
  Lee	
  (OSU),	
  with	
  collaborator	
  P.C.	
  Wong	
  (PNNL)	
  
developed	
  an	
  interface	
  to	
  assist	
  scien4sts	
  in	
  iden4fying	
  and	
  exploring	
  the	
  
MJO	
  phenomenon	
  in	
  simula4ons.	
  

19	
  



20	
  

A	
  typical	
  method	
  of	
  viewing	
  water	
  vapor	
  mixing	
  ra4o	
  is	
  
via	
  a	
  4meline	
  view,	
  with	
  4me	
  on	
  the	
  Y	
  axis	
  and	
  longitude	
  
on	
  the	
  X	
  axis	
  (known	
  as	
  a	
  Hovmoller	
  diagram).	
  
	
  
Orange	
  line	
  tracks	
  highest	
  water	
  vapor	
  mixing	
  ra4o	
  over	
  
4me	
  (MJO	
  path),	
  while	
  red	
  box	
  selects	
  an	
  interval	
  of	
  4me	
  
for	
  visualiza4on	
  on	
  the	
  right.	
  Green	
  lines	
  show	
  heatmap	
  
loca4ons.	
  

Builds	
  off	
  the	
  widely-­‐available	
  
Google	
  Earth	
  plaworm,	
  can	
  be	
  
embedded	
  in	
  web	
  pages.	
  

Heatmap	
  views	
  are	
  generated	
  on	
  
demand	
  when	
  user	
  selects	
  a	
  
longitude.	
  Heatmap	
  shows	
  water	
  
vapor	
  mixing	
  ra4o	
  by	
  al4tude	
  
(Y	
  axis)	
  over	
  4me	
  (X	
  axis).	
  

Red	
  arrows	
  indicate	
  direc4on	
  of	
  
cloud	
  system	
  movement	
  in	
  the	
  
selected	
  4me	
  period.	
  

Thanks	
  to	
  H.	
  Shen	
  and	
  T.	
  Lee	
  (OSU)	
  
for	
  providing	
  this	
  material.	
  



Understanding How a Laser Pulse Propagates 
Through a Hydrogen Plasma 
§  VORPAL	
  code	
  used	
  to	
  simulate	
  laser	
  wakefield	
  par4cle	
  accelerator	
  

–  3D	
  simula4on	
  
–  30	
  4mesteps	
  
–  90	
  million	
  par4cles	
  per	
  4mestep,	
  ~5	
  Gbytes	
  of	
  data	
  per	
  4mestep	
  

§  Ques4ons:	
  
–  Which	
  par4cles	
  become	
  accelerated?	
  How	
  are	
  they	
  accelerated?	
  
–  How	
  did	
  the	
  beam	
  form?	
  How	
  did	
  it	
  evolve?	
  

§  Data	
  management,	
  analysis,	
  and	
  visualiza4on:	
  
–  Data	
  model	
  support	
  –	
  HDF5,	
  H5Part	
  to	
  store	
  data	
  with	
  appropriate	
  metadata	
  
–  Indexing	
  –	
  FastBit	
  to	
  enable	
  quick	
  iden4fica4on	
  of	
  par4cles	
  of	
  interest,	
  

associate	
  par4cles	
  between	
  4mesteps	
  
–  Visualiza8on	
  –	
  Parallel	
  coordinates	
  view	
  to	
  help	
  user	
  select	
  par4cles,	
  VisIt	
  as	
  

deployment	
  vehicle	
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Rubel	
  et	
  al.	
  High	
  performance	
  mul4variate	
  visual	
  data	
  explora4on	
  for	
  extremely	
  large	
  data.	
  SC08.	
  November,	
  2008.	
  



Beam Selection 

Parallel	
  coordinates	
  view	
  of	
  t	
  =	
  12	
  
§  Grey	
  par4cles	
  represent	
  ini4al	
  selec4on	
  

(px	
  >	
  2*109)	
  
§  Red	
  par4cles	
  represent	
  “focus	
  par4cles”	
  

in	
  first	
  wake	
  period	
  following	
  pulse	
  
(px	
  >	
  4.856*1010)	
  &&	
  (x	
  >	
  5.649*10-­‐4)	
  

	
  
	
  
Volume	
  rendering	
  of	
  plasma	
  density	
  with	
  
focus	
  par4cles	
  included	
  in	
  red	
  (t	
  =	
  12)	
  
§  Helps	
  locate	
  beam	
  within	
  wake	
  

Thanks	
  to	
  E.	
  Wes	
  Bethel	
  (LBNL)	
  for	
  providing	
  this	
  material.	
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Tracing Particles 
over Time 

Tracing	
  par4cles	
  back	
  to	
  t	
  =	
  9	
  and	
  
forward	
  to	
  t	
  =	
  14	
  allows	
  scien4st	
  to	
  see	
  
accelera4on	
  over	
  4me:	
  
§  Heatmap	
  shows	
  par4cles	
  constantly	
  

accelerated	
  over	
  4me	
  (increase	
  in	
  
px,	
  leM	
  to	
  right).	
  

§  Grey	
  par4cles	
  show	
  ini4al	
  selec4on	
  
(for	
  reference).	
  

More	
  recent	
  work	
  shows:	
  
§  Par4cles	
  start	
  out	
  slow	
  (blue,	
  leM),	
  

undergo	
  accelera4on	
  (reds),	
  then	
  
slow	
  again	
  as	
  the	
  plasma	
  wave	
  
outruns	
  them	
  (blue,	
  right).	
  

§  Spiral	
  structure	
  shows	
  par4cles	
  
oscilla4ng	
  transversely	
  in	
  the	
  
focusing	
  field	
  (new	
  science).	
  

Thanks	
  to	
  E.	
  Wes	
  Bethel	
  (LBNL)	
  for	
  providing	
  this	
  material.	
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SDAV Technology Use in Leadership Applications 
Applica8on	
   Code	
   Contact	
   Alloca8on	
  

(M	
  node	
  hours)	
  
SDAV	
  Technologies	
  

Astrophysics	
   Chimera	
   T.	
  Mezzacappa	
   60	
   ADIOS,	
  VisIt,	
  Ultravis-­‐V	
  
Astrophysics	
   FLASH	
   D.	
  Lamb	
   80	
   PnetCDF,	
  GLEAN,	
  ROMIO,	
  VisIt,	
  VTK	
  
Astrophysics	
   Maestro	
   J.	
  Bell	
   50	
   VisIt	
  
Astrophysics	
   Enzo	
   M.	
  Norman	
   35	
   ParaView,	
  VisIt	
  
Biology	
   Nektar	
   G.	
  Karniadakis	
   50	
   ParaView	
  
Climate	
   POP	
   P.	
  Jones	
   110	
   PnetCDF,	
  ParaView,	
  ROMIO	
  
Combus4on	
   S3D	
   J.	
  Chen	
   60	
   ADIOS,	
  Dataspaces,	
  Ultravis-­‐V,	
  Ultravis-­‐P,	
  	
  

ViSUS	
  IDX,	
  Topologika	
  
Combus4on	
   Boxlib	
   J.	
  Bell	
   60	
   VisIt,	
  ADIOS,	
  Topologika	
  
Combus4on	
   Nek5000	
   C.	
  Frouzakis	
   150	
   VisIt	
  
Cosmology	
   HACC	
   S.	
  Habib	
   150	
   ParaView,	
  ROMIO,	
  Ultravis-­‐P	
  
Fusion	
   GTC	
   Z.	
  Lin	
   35	
   ADIOS,	
  DataTap,	
  FastBit,	
  Ultravis-­‐V	
  
Fusion	
   XGC	
   C.S.	
  Chang	
   50	
   ADIOS,	
  Dataspaces,	
  FastBit,	
  Ultravis-­‐V,	
  VTK	
  
Fusion	
   GTC-­‐P	
   W.	
  Tang	
   58	
   ADIOS,	
  Ultravis-­‐V,	
  Ultravis-­‐P	
  
Plasma	
   VPIC	
   B.	
  Daughton	
   30	
   PnetCDF,	
  ParaView,	
  ROMIO	
  
Nuclear	
   Nek5000	
   P.	
  Fischer	
   25	
   ROMIO,	
  VisIt	
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Final Comments: Accomplishing Our Goal 

A	
  mix	
  of	
  ac4vi4es	
  contribute	
  to	
  the	
  success:	
  
§  Community	
  Engagement	
  –	
  Ac4vely	
  engaging	
  applica4on	
  teams	
  running	
  

on	
  leading	
  DOE	
  compu4ng	
  systems,	
  our	
  sibling	
  Ins4tutes,	
  and	
  DOE	
  
compu4ng	
  facility	
  personnel	
  over	
  the	
  life4me	
  of	
  the	
  Ins4tute.	
  	
  

§  Technology	
  Deployment	
  –	
  Working	
  with	
  applica4on	
  scien4sts	
  so	
  that	
  they	
  
can	
  use	
  state	
  of	
  the	
  art	
  tools	
  and	
  techniques	
  to	
  support	
  their	
  needs	
  in	
  
data	
  management,	
  analysis,	
  and	
  visualiza4on	
  tasks.	
  	
  

§  Research	
  Integra8on	
  –	
  Incorpora4ng	
  ASCR	
  basic	
  research	
  results	
  into	
  our	
  
porwolio	
  and	
  developing	
  new	
  technologies	
  as	
  needed	
  to	
  meet	
  the	
  needs	
  
of	
  applica4on	
  scien4sts	
  over	
  the	
  next	
  five	
  years.	
  

§  SoUware	
  Support	
  –	
  Performing	
  quality	
  soMware	
  deployment,	
  
maintenance,	
  and	
  support	
  to	
  ensure	
  the	
  success	
  of	
  our	
  tools.	
  	
  

Computa8onal	
  science	
  applica8ons	
  are	
  data	
  intensive.	
  SDAV	
  is	
  assis8ng	
  
scien8sts	
  in	
  using	
  state-­‐of-­‐the-­‐art	
  tools	
  and	
  techniques	
  to	
  manage	
  this	
  data	
  
and	
  glean	
  new	
  science	
  discoveries.	
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