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Urgent Questions

Can we trust our predictive capabilities in a
tightly-coupled, complex, and turbulent world?

How can the current “risk-based” paradigm be
extended to address “inherent” resilience?

When does pursuit of resilience support or
conflict with sustainability goals?

How can the public and private sectors adopt a
more “adaptive” approach to decision making?

Can we develop a new generation of analytic
tools based on “systems thinking” that are
suitable for the “new normal”?



Sustainability and Resilience

J—
is the capacity for long-term

realization of human health and well being,
economic prosperity, & environmental protection

— However, conditions can lead to
unintended and/or undesired consequences
is the capacity to survive, adapt,
and flourish in the face of changing conditions
and potential disruptions (assuring continuity)
— Dispersion, diversity, foresight, agility, redundancy,
flexibility, simplicity, buffering, adaptability, etc.
* In a complex and turbulent world, resilience is a
for realization of sustainability goals



Principles of System Resilience

Resilience, i.e., adaptive capacity, is an intrinsic
characteristic of all self-organizing systemes.

Resilience is manifested in a system’s response to
gradual changes or sudden disruptions.

The resilience of a system is influenced by its
components or subsystems and its environment.

The resilience of a system is influenced by cycles of
change at different temporal and spatial scales.

Indicators of relative resilience can be defined for a
specific category of systems.

The resilience of a system can be enhanced even
without foresight about potential disruptions.

Resilience is necessary, but not sufficient, for long-term
sustainability of a system.



Resilience vs. Sustainability:
Examples of Synergies and Trade-offs
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Systems View: Triple Value Model
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Principal Stocks and Flows
and Beneficial Policy Interventions
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Example: The Carbon-Nitrogen Nexus
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The Ecological Footprint
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Projected Natural Capital Deficit
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Example: EPA’s Integrated Model for
Nutrient Mitigation in New England
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System Dynamics Model: Narragansett-3VS
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Adaptive Approach to Public Policy
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Waves of Innovation

J—
Challenge Response

Unintended environmental, Design for
health, or safety impacts Environment
over the product life cycle (1990's)
Threat of resource scarcity Design for
and diminished opportunity | Sustainability
for future generations (2000's)
Complexity and turbulent -
change in global economic, Des!qn for
social, & ecological systems Resilience
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“...the widespread use of inherently
resilient technologies for supplying
energy, in conjunction with highly
efficient energy use, can profoundly
improve national security.”

Amory B. Lovins
and L. Hunter Lovins
Brittle Power, 1982




Thank You!
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