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Urgent Questions 

• Can we trust our predictive capabilities in a 
tightly-coupled, complex, and turbulent world? 

• How can the current “risk-based” paradigm be 
extended to address “inherent” resilience? 

• When does pursuit of resilience support or 
conflict with sustainability goals? 

• How can the public and private sectors adopt a 
more “adaptive” approach to decision making? 

• Can we develop a new generation of analytic 
tools based on “systems thinking” that are 
suitable for the “new normal”? 



Sustainability and Resilience 

• Sustainability is the capacity for long-term 
realization of human health and well being, 
economic prosperity, & environmental protection 

– However, unforeseen conditions can lead to 
unintended and/or undesired consequences 

• Resilience is the capacity to survive, adapt,  
and flourish in the face of changing conditions  
and potential disruptions (assuring continuity) 

– Dispersion, diversity, foresight, agility, redundancy, 
flexibility, simplicity, buffering, adaptability, etc. 

• In a complex and turbulent world, resilience is a 
prerequisite for realization of sustainability goals 



Principles of System Resilience 

1. Resilience, i.e., adaptive capacity, is an intrinsic 
characteristic of all self-organizing systems. 

2. Resilience is manifested in a system’s response to 
gradual changes or sudden disruptions. 

3. The resilience of a system is influenced by its 
components or subsystems and its environment. 

4. The resilience of a system is influenced by cycles of 
change at different temporal and spatial scales. 

5. Indicators of relative resilience can be defined for a 
specific category of systems. 

6. The resilience of a system can be enhanced even 
without foresight about potential disruptions. 

7. Resilience is necessary, but not sufficient, for long-term 
sustainability of a system. 
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Systems View: Triple Value Model 
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Principal Stocks and Flows 

and Beneficial Policy Interventions 
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J. Fiksel, “A Systems View of Sustainability: The Triple Value Model,” Environmental Development, June 2012. 
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Example: The Carbon-Nitrogen Nexus  
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Source: B. Bakshi, OSU 
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Example: EPA’s Integrated Model for 

Nutrient Mitigation in New England 
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System Dynamics Model: Narragansett-3VS 
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Cohesive policy 

framework based 

on systems view 
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Waves of Innovation 
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“…the widespread use of inherently 
resilient technologies for supplying 
energy, in conjunction with highly 
efficient energy use, can profoundly 
improve national security.” 

Amory B. Lovins  

and L. Hunter Lovins 

Brittle Power, 1982 
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