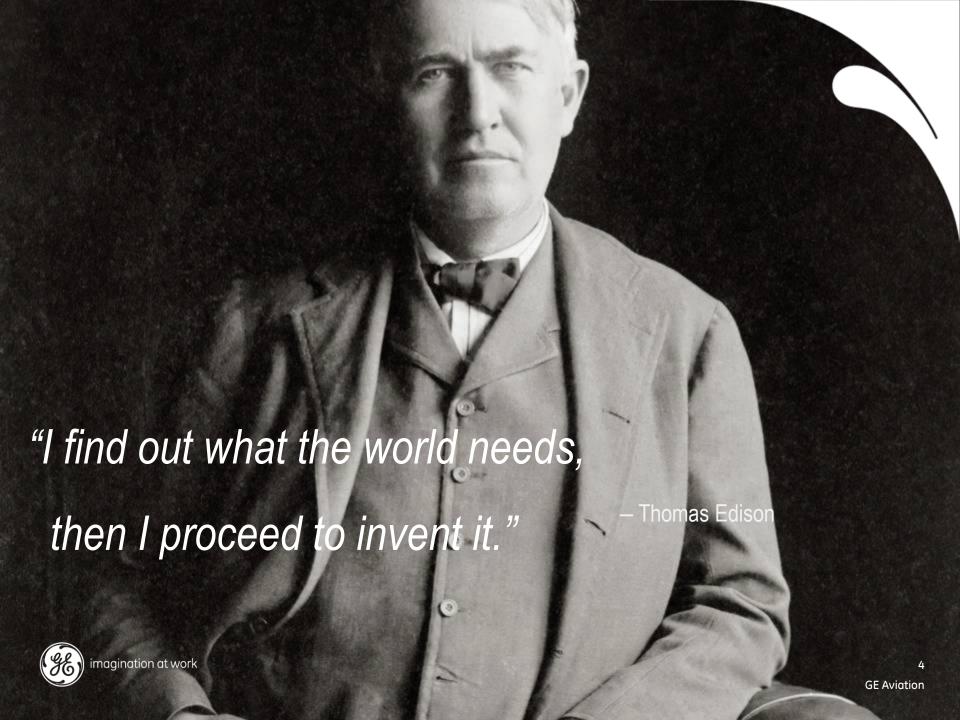
GE Aviation: Investing in the Future

Dr. Dale Carlson April 3, 2013

2nd Meeting of the Committee on Globalization of Science and Technology: Opportunities and Challenges for the Department of Defense


The three questions:

- (a) How GE maintains global awareness of what is happening in diverse areas of science, technology, and innovation?
- (b) How GE builds mutually beneficial relationships and partnerships across the global S&T enterprise?
- (c) How GE assesses the benefits and costs of conducting, as well as engaging in, global S&T?

Note: The material that follows is a high level, non-proprietary response by the General Electric Company to the aforementioned questions.

GE Aviation: Legacy/marketplace

GE Aviation portfolio ... \$20B

Largest provider of jet engines in the world

- 40,000 employees
- ~85 sites globally

(a- Includes GE's share of revenue from CFM and EA engines

CFM is a 50/50 JV between GE and Snecma

EA is a 50/50 JV between GE and Pratt & Whitney

Technical innovation ...

Key to our past and future

U.S. jet engine

U.S. turboprop engine

Mach 2 engine

High bypass engine

Variable cycle turbofan engine

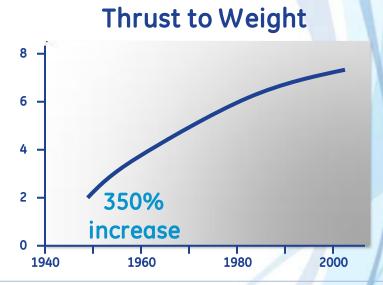
Unducted fan engine

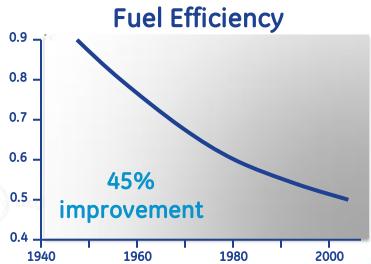
Composite fan blade in airline service

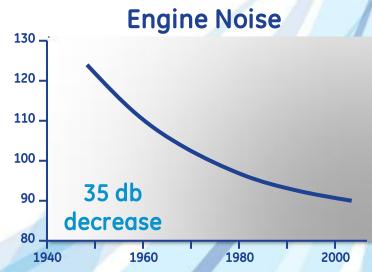
120,000+ lb thrust engine

4D trajectory flight in revenue service

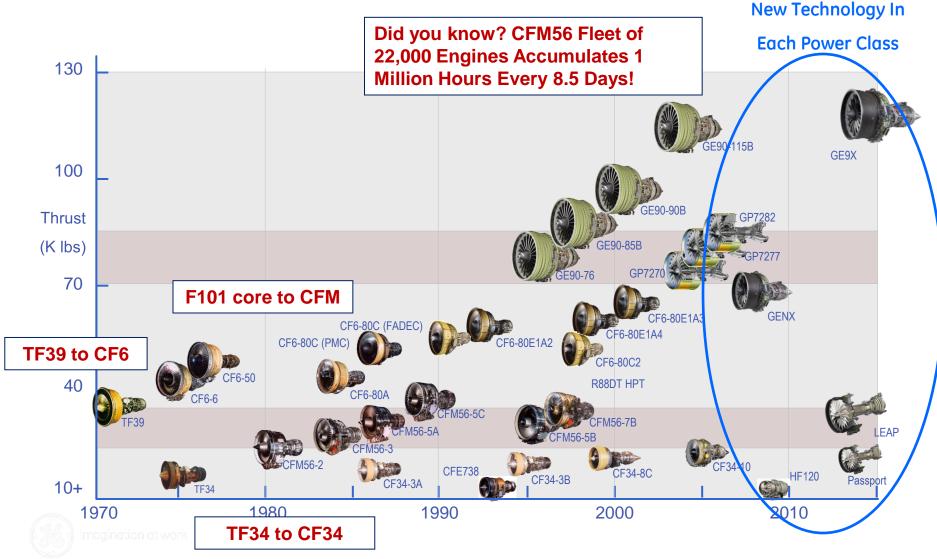
Modular power tile


FMS-controlled Unmanned Aircraft System



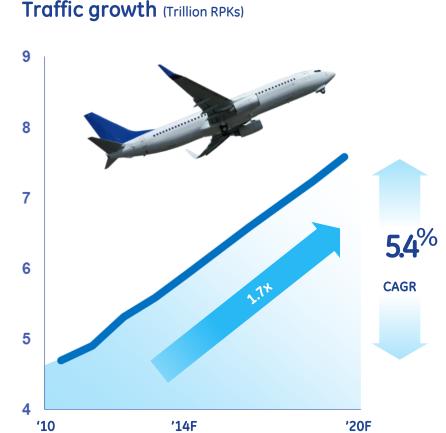


50 years of engine improvements



Commercial engines...by thrust rating



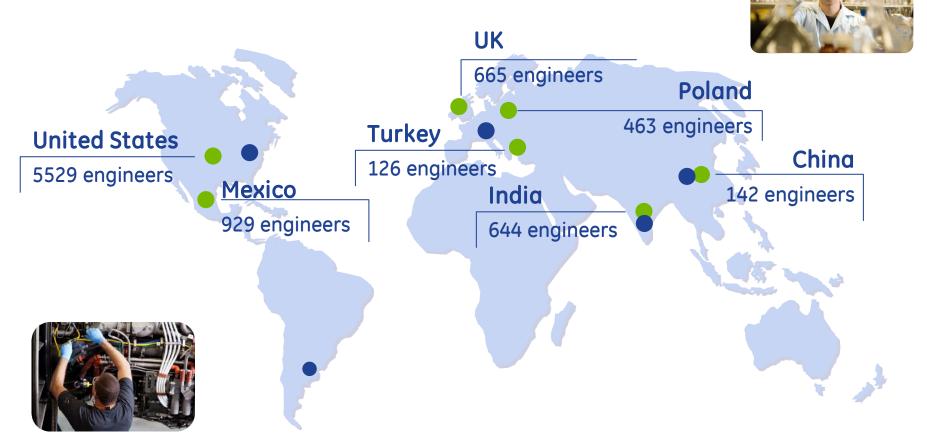


The Future: Global forces/environment

Commercial aviation growing steadily

Highest production ramp rates in 3 decades ... inconsistent with demand growth

Boeing and Airbus are increasing rates to \sim 40 / month. That means: 40 x 2 (Airbus & Boeing) x 11.5 mth. / yr. = 920 / yr. or \sim 1,000 including the other new single aisles.1,000 x 5 years = 5,000 / 10 yrs. = 10,000 / 20 yrs. = 20,000 aircraft.

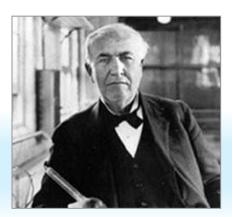

Our Industry-Specifically Propulsion

- Timescales of innovation long...safety demands technologies to be proven...strategic vision/commitment a must (Gamma TiAl, CMC, etc.)...multi-decade VISION
- Almost every flying technology started as a USG funded (NASA, DoD, etc.) early TRL level study, many driven to TRL 5 or 6. Changing dynamics/players...WTO agreement, sequestration, emerging funding sources
- Doubling of revenue miles every 13-15 years despite "shocks" such as 911
- Question: How many "tube/wing" iterations are left?
 - > 15% campaign/campaign FB improvement a must
 - > ICAO 2050 CO₂ commitment, other regs looming

GE Aviation Engineering

Over 8000 engineers around the globe
3000 technologists at 5 Global Research Sites

Practical innovation ... GE's model


Global resources teamed to advance technology

Idea creation +

Winning products

- Internal
- Customers
- Government
- Universities (300+ relationships)

- Cross-disciplinary teams
- Technology roadmaps
- TRL/MRL maturation plans
- Long-term growth strategies
- Tactical funding

30+ new technologies by 2020

The Physics of "Readiness to Serve"

$$Range = \left(\frac{V_0}{SFC}\right) * \left(\frac{L}{D}\right) * \ln \left(\frac{W_{initial}}{W_{final}}\right)$$

$$= (FHV * \eta_{thermal}) * \eta_{transfer} * \eta_{propulsive}) * (\frac{L}{D}) * \ln \left(1 + \frac{W_{fuel}}{W_{payload} + W_{empty}}\right)$$

Today

2020-2050?

- Highly Loaded Compressors
- High OPR Low Emissions Combustors
- Low Loss Inlets
- Variable Low Loss Exhausts
- Turbofans

Very High BPR

- Ultra High BPR Turbofans
- Novel Alloys / MMC's
- Non-metallics

- Adaptive cycles
- Constant Volume Combustion
- Hybrid Electric Propulsion
- Distributed Power Transmission
- Open Rotors
- Distributed Propulsion
- Wake Ingestion

 Advanced Engine Architectures

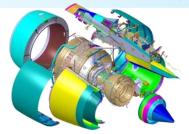
Essential technologies ... keeping the pipeline filled

Technology

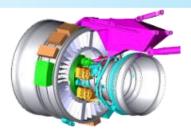
High-temp materials

Flight Management

2010


Advanced turbofan

Integrated engine and aircraft systems


Adaptive cycles

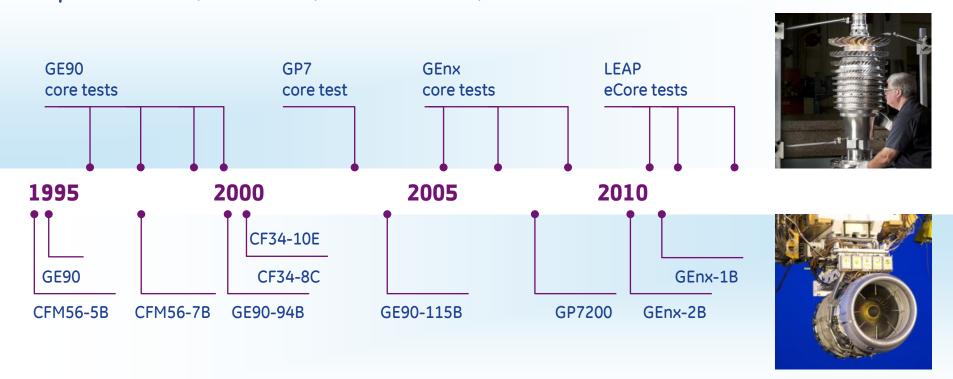
Advanced architectures 2020

Architecture

Integrated propulsion

Integrated power generation

Core efficiency



New designs

Technology success takes commitment and opportunity

Commitment ... **\$1-2** billion continuous technology investment per year, despite 911 (01), SARS (02), Avian Flu (05), and financial meltdown (08)

Opportunity ... 10 new engines proving and maturing technology

CFM i CFM, CFM56, LEAP and the CFM logo are trademarks of CFM International, a 50/50 joint company between Snecma and GE s a 50/50 JV between GE and Snecma

Propulsion R&D and/or S&T: 2005 to date, one of the best of times...what follows?

DARPA: VULCAN

EU: Clean Sky JTI (€1.6 B)

FAA: CLEEN, NextGen

NASA: ERA, Low NOx, N+1, N+2, N+3, RTAPS, SMAAART, etc.

VAATE: AATE, ADVENT, AETD, FATE, HEETE, VCAT, etc

SBIRs: Numerous Opportunities

VAATE Propulsion Demo Programs Despite F136 loss, helps GE preserve industrial base

	GE	Other OEM	Other OEM Team	Other OEM
AATE (USA)	Win		Win	
ADVENT (USAF)	Win	Win		
AETD (USAF)	Win			Win
FATE (USA)	Win			
HEETE (USAF)	Win	Win		
Total Wins	5	2	1	1

NextGen portfolio Potential military/commercial technology synergies

Helicopters

Helicopters

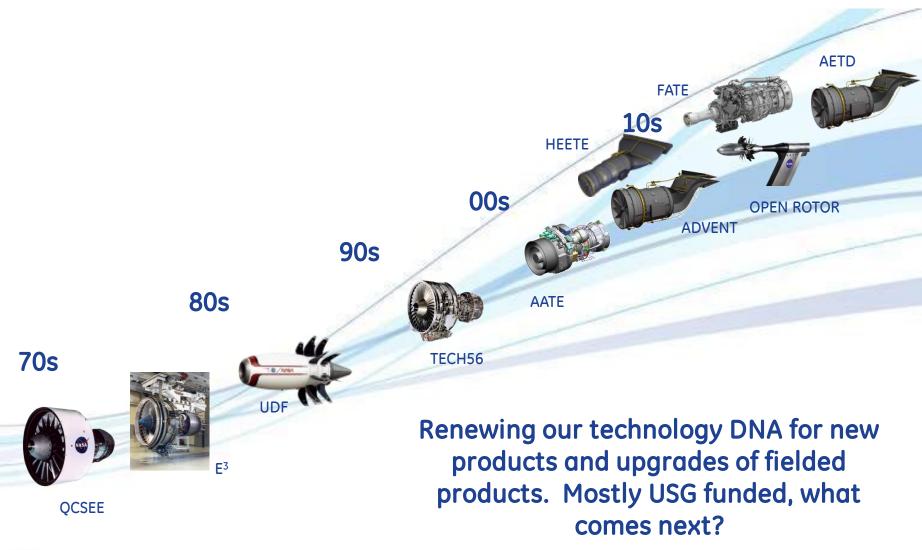
HEETE
(Highly Efficient,

Embedded Turbine Engine)

Customer	US Army	US Army	US Navy/ US Air Force	US Air Force
Program goals	25% better SFC 65% ↑hp/wt	35% better SFC 80% ↑hp/wt	20-200+% better SFC	35% better SFC
Technologies	3D aero, materials	3D aero, efficiency	Variable cycle, 3D aero, FLADE™	3D aero, efficiency
Cogmonto	Attack/utility	Heavy lift	Combat aircraft	Tonkor/Transport

Combat aircraft

KC-135


Tanker/Transport

6th Generation

Segments

Technology demonstrator programs

Global S&T relationships and partnerships

Emerging architectures, new thermodynamic cycles, hybrids, etc., concept studies good, but...cannot let others get there first!

- Organic capability never enough...build portfolio to meet the future via several approaches:
 - ✓ Joint Technology Development Agreements (JTDAs)
 - Example: Meltless Ti
 - ✓ Joint Ventures
 - Example: TAPS one piece fuel nozzle
 - ✓ Business Development (BD) plays...acquisition
 - Example: Additive manufacturing
- Must participate in setting standards for the certification of emerging technologies:
 - ✓ EU sent out draft electric cert rules for light sport aircraft in 2012 for comments, establish rules in 2013.

S&T value proposition...key items

Emerging global players, significant inducements from non-traditional sources:

- ➤ Canada (>48% R&D reimbursements), China (significant FTZ inducements, seeking partnerships), EU (Clean Sky I and II), and Singapore (A*STAR)...can offset high costs of TRL/MRL maturation of emerging technologies
- Background & new IP release requirements a key decision driver (Appears to be a key part of future DoD acquisition requirements)
- Campaigns and proposals for our products...linked to technology engagement/sharing

GE's commitment ...

- Technology innovation for customer value
- Learning from the world's largest installed fleet
- Focusing on people, processes, and tools across the globe
- To be prepared for, and shape, the future of flight

