
**Albany
Innovation
Conference**

April 2013

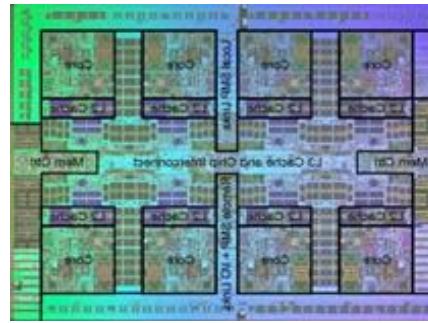
Collaboration as a Way forward for Semiconductor Technology – *Albany NanoTech*

Dr. Gary Patton
Vice President, IBM Semiconductor
Research & Development Center
IEEE Fellow

Accelerating Advances in Technology

Milestones in Our Industry

1964 Solid Logic Technology


IBM System 360
The machine that defined
the computer industry
and the modern IBM

Transistor

IBM System 360
SLT module c.1964
6 transistors, 4 resistors

Power7 today (used in 'Watson')

Watson System

- 360 Power7 chips
- 80KW / 80 Teraflops
- 1000Mflops/W

Chip

- 1.2 billion transistors/chip
- Embedded DRAM
- 190 watts max

Chip Technology is Changing the World

30 billion

Number of RFID tags that will be embedded into our world and across entire ecosystems by 2010

4 billion

Estimated number of mobile phone subscribers worldwide

1 trillion

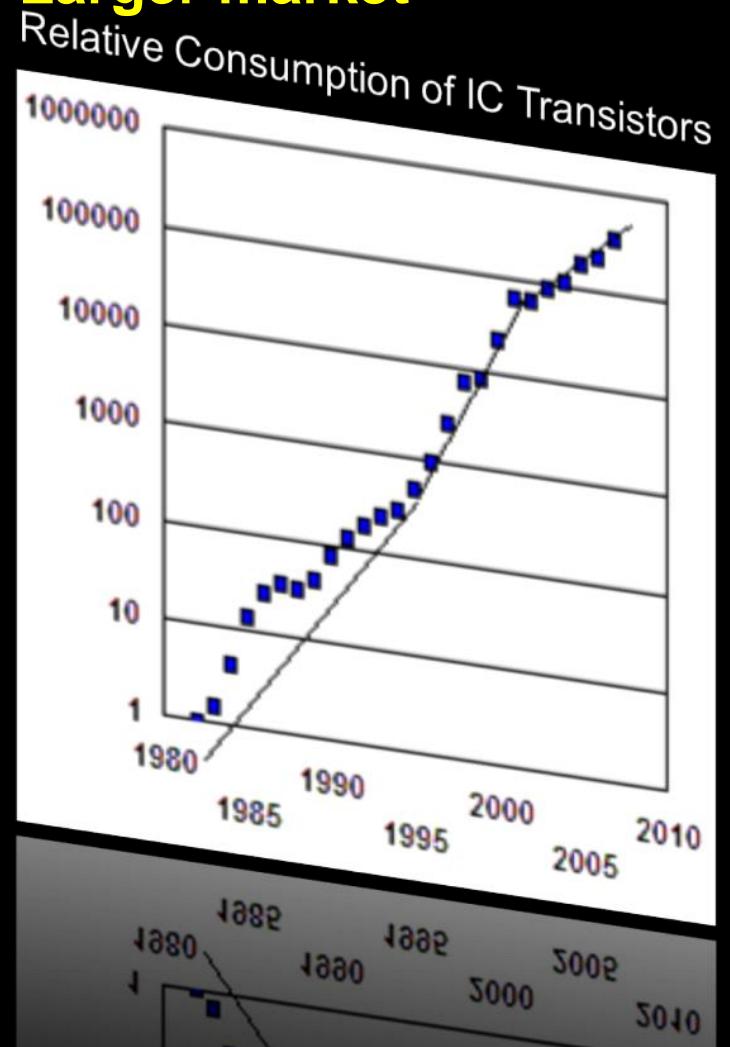
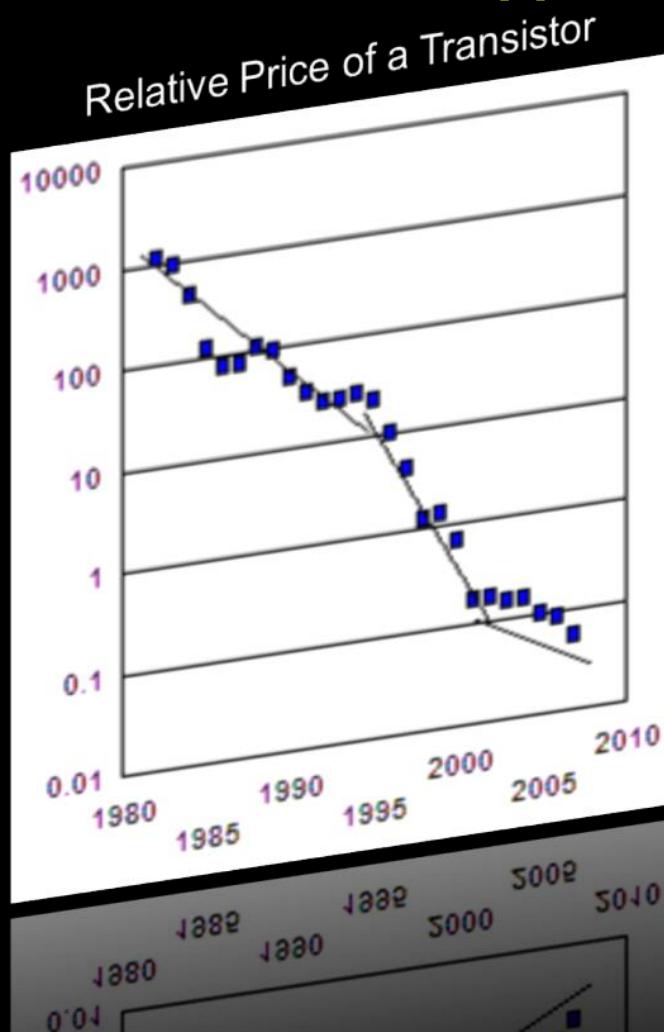
Number of connected devices in the world, constituting an “internet” of things

225,000 terabytes/month

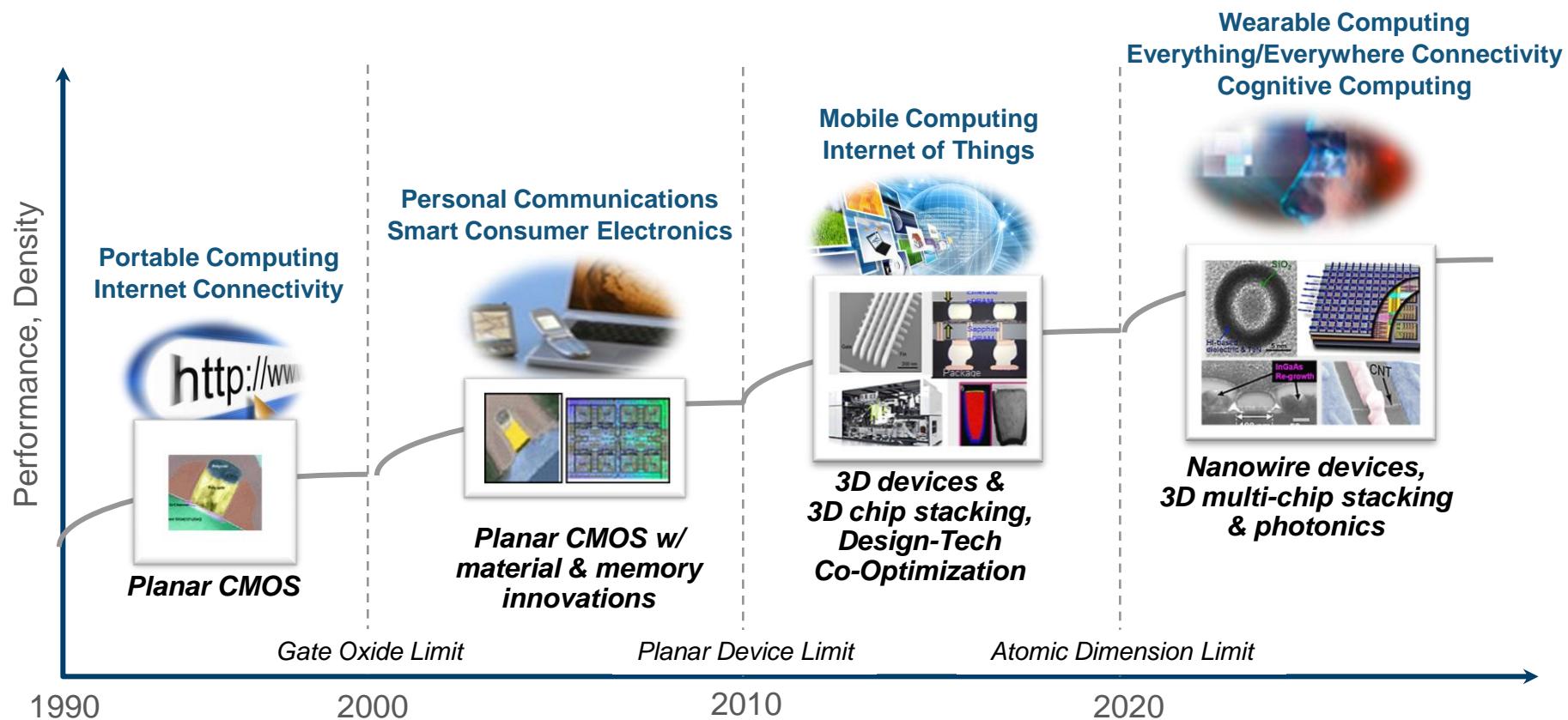
Global mobile data traffic ... more than 2x growth over 2009, growing at 10x rate of voice traffic

2.4 billion

Estimated number of people on the internet in 2012



100 per day

Number of texts the average 13- to 17-year-old sends & receives


Internet of Things

Driving Force: Economics

**Smaller features → Better performance & cost/function →
More applications → Larger market**

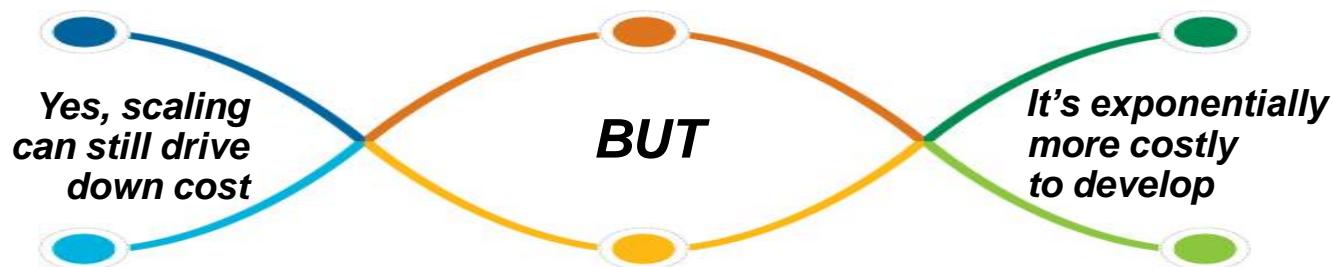
Silicon Technology Innovation for Ubiquitous Computing

Scaling Thru Materials Innovations

■ Elements Employed in Silicon Technology


hydrogen 1 H 1.0079	beryllium 4 Be 9.0122	Before 90's												helium 2 He 4.0026			
lithium 3 Li 6.941	magnesium 12 Mg 24.305	Since the 90's												neon 10 Ne 20.180			
sodium 11 Na 22.990	calcium 20 Ca 40.078	Beyond 2006												argon 18 Ar 39.948			
potassium 19 K 39.098	strontium 38 Sr 87.62	scandium 21 Sc 44.956	titanium 22 Ti 47.867	vanadium 23 V 50.942	chromium 24 Cr 51.966	manganese 25 Mn 54.938	iron 26 Fe 55.845	cobalt 27 Co 58.933	nickel 28 Ni 58.693	copper 29 Cu 63.546	zinc 30 Zn 65.39	gallium 31 Ga 69.723	germanium 32 Ge 72.61	arsenic 33 As 74.922	selenium 34 Se 78.96	bromine 35 Br 79.904	krypton 36 Kr 83.80
rubidium 37 Rb 85.468	rubidium 38 Sr 87.62	yttrium 39 Y 88.906	zirconium 40 Zr 91.224	niobium 41 Nb 92.906	molybdenum 42 Mo 95.94	technetium 43 Tc [98]	ruthenium 44 Ru 101.07	rhodium 45 Rh 102.91	palladium 46 Pd 106.42	silver 47 Ag 107.87	cadmium 48 Cd 112.41	indium 49 In 114.82	tin 50 Sn 118.71	antimony 51 As 121.76	tellurium 52 Te 127.60	iodine 53 I 126.90	xenon 54 Xe 131.29
caesium 55 Cs 132.91 137.33	barium 56 Ba 137.33	57-70 * Lu 174.97	lutetium 71 Hf 178.49	hafnium 72 Ta 180.95	tantalum 73 W 183.84	tungsten 74 Re 186.21	rhenium 75 Os 190.23	osmium 76 Ir 192.22	iridium 77 Pt 195.08	platinum 78 Au 196.97	gold 79 Hg 200.59	mercury 80 Tl 204.38	thallium 81 Pb 207.2	lead 82 Bi 208.98	polonium 84 Po [209]	astatine 85 At [210]	radon 86 Rn [222]
francium 87 Fr [223]	radium 88 Ra [226]	89-102 ** Lr [262]	lawrencium 103 Rf [261]	rutherfordium 104 Db [262]	dubnium 105 Sg [266]	seaborgium 106 Bh [264]	bohrium 107 Hs [269]	hassium 108 Mt [268]	meitnerium 109 Uun [271]	ununnilium 110 Uuu [272]	ununnilium 111 Uub [277]	ununbium 112 Uuq [289]	ununquadium 114 Uuq [289]				

*lanthanoids


**actinoids

lanthanum 57 La 138.91	cerium 58 Ce 140.12	praseodymium 59 Pr 140.91	neodymium 60 Nd 144.24	promethium 61 Pm [145]	samarium 62 Sm 150.36	europeum 63 Eu 151.96	gadolinium 64 Gd 157.25	terbium 65 Tb 158.93	dysprosium 66 Dy 162.50	holmium 67 Ho 164.93	erbium 68 Er 167.26	thulium 69 Tm 168.93	ytterbium 70 Yb 173.04
actinium 89 Ac [227]	thorium 90 Th 232.04	protactinium 91 Pa 231.04	uranium 92 U 238.03	neptunium 93 Np [237]	plutonium 94 Pu [244]	americium 95 Am [243]	curium 96 Cm [247]	berkelium 97 Bk [247]	californium 98 Cf [251]	einsteinium 99 Es [252]	fermium 100 Fm [257]	mendelevium 101 Md [258]	nobelium 102 No [259]

Changing Innovation Requirements

Traditional scaling is reaching its limits...but the economics of Moore's Law are still holding...

Continued advances mean changing the way we think about innovation

Innovation

Technical Innovation

- Material & Process innovation must be able to counter the limits of traditional scaling
- Long-term R&D focus/investment needed to drive this innovation and sustain roadmap
- Design technology must be able to support & leverage materials and process innovation (Design-Technology Co-Optimization)

Business Model Innovation

- Collaborative R&D replaces independent R&D
- Collaboration needs to include all functions (semiconductor manufacturers, equipment vendors, & material suppliers)
- Shared investments / learning fosters breakthroughs beyond what would be possible for a single company / function

Innovation Technology Pipeline – From Research to Market

Fundamental Research

New materials,
processes, &
devices

Si Nanowires
Low Dimensional
Carbon Electronics

Phase Change
Memory (PCM)

Silicon
Nanophotonics

IBM Yorktown,
Almaden, & Zurich

Advanced Semiconductor R&D

Innovation &
Collaboration in
process & packaging
technology

Process Element &
Device Exploration

Adv. Packaging
Center / 3Di

Equipment Dev.
Center (EDC)

Sematech

G450C Consortia

Albany NanoTech

Technology Development

Multi-Company
Collaborations

Process
Technology
Development

Packaging
Technology
Development

*IBM East Fishkill
IBM Bromont
GF Malta*

Manufacturing

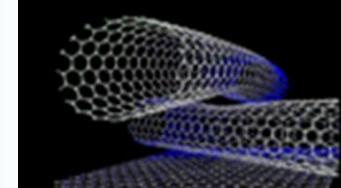
Process
synchronized
fabricators
(GDSII compatible)

High Performance
Server, ASICs, &
Games Products

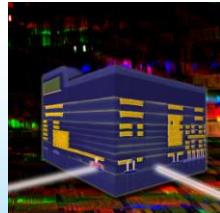
Foundry
Technology
Offerings

*IBM East Fishkill
IBM Bromont
GF Malta*

Innovation Fueled by Long-Term R&D Investment


LAB	IBM Yorktown	IBM Almaden	IBM Zurich
RESEARCH	Devices, Materials, Nanoscience & Technology	Materials, Nanoscience & Technology	Nanoscience & Technology
PROJECTS	Deep Research in Solid State Devices, Si Nanowire, Carbon Nanotubes / Graphene, III-V Devices, New materials, Si Nanophotonics, Adv. 3D IC, New memory technologies.	New Solid State materials, Advanced Lithography Photoresist, Direct Self Assembly, Atomic scale microscopy, Nanobiology, Cognitive Computing,	Spintronics / Magnetism, Nanowires, Packaging for Thermal Management, MEMS / NEM, Computational Material Science, Photonics, III-V Materials, Molecular Electronics, Nanobiology
FACILITY	Microelectronics Research Line, E-Beam, Blue Gene, Advanced Diagnostic & Test Instrumentation, Nuclear Accelerator, WATSON	Research Labs, E-Beam, Clean Room, Dry & Wet Labs, Materials Scale Up Facility, Blue Gene, STM, AFM, TEM, NRA	Binnig and Rohrer Nanotechnology Center, "Noise-Free" Labs, Probe Microscopy, Nanostencil Patterning

- IBM inventors received a record 6,478 U.S. patents in 2012
- 20th consecutive year topping the list of the world's most inventive companies


Future Technology Innovations in the News

IBM Claims Carbon Nanotube IC Breakthrough

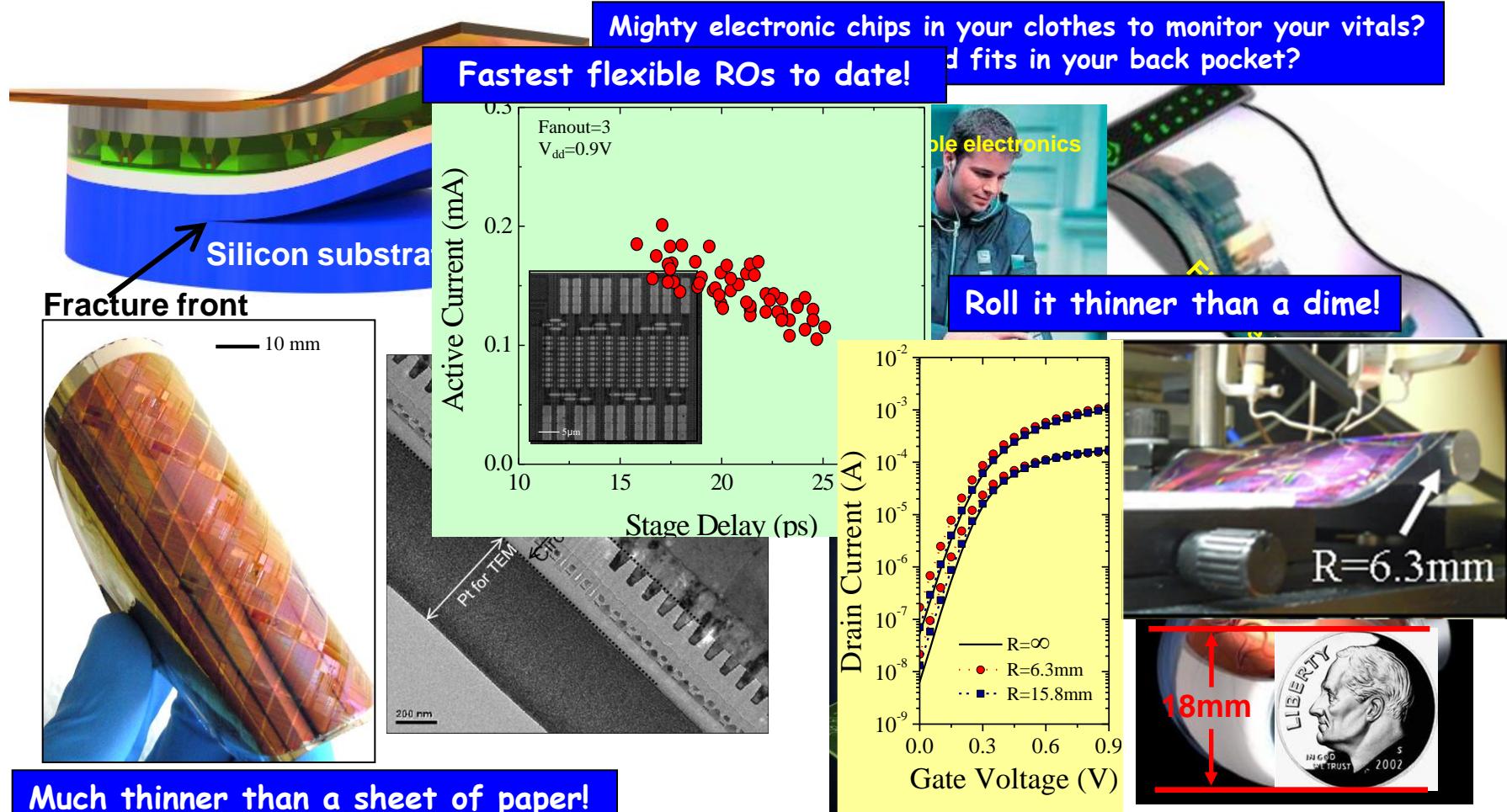
*Claiming a first, IBM said its researchers placed **more than 10,000 working nanotube transistors on a single device** using standard semiconductor processes...*

EE Times Oct 2012

IBM Develops Nanophotonics Chip For Faster Communications

*... **silicon nanophotonics**...chips use pulses of light to communicate....
The key innovation isn't just the technology... It's the fact that its commercial and scalable....*

Forbes, Dec 2012


IBM paves way for wearable electronics, folding displays

*... a new, low-cost technique for **manufacturing silicon-based electronics on a flexible plastic substrate**...research suggests that flexible, affordable electronics **can be made with conventional processes at room temperature**.*

EE Times Dec 2012

Everywhere Computing

Innovation Fueled by Increased R&D Investment

Albany NanoTech Research Facility

2002: 200mm Capability

2005: New 300mm Fab

2008-2013: 300mm Expansion, PKG Center, EUV CoE, 450mm Capability

State of the art pilot line and a one of a kind partnership:

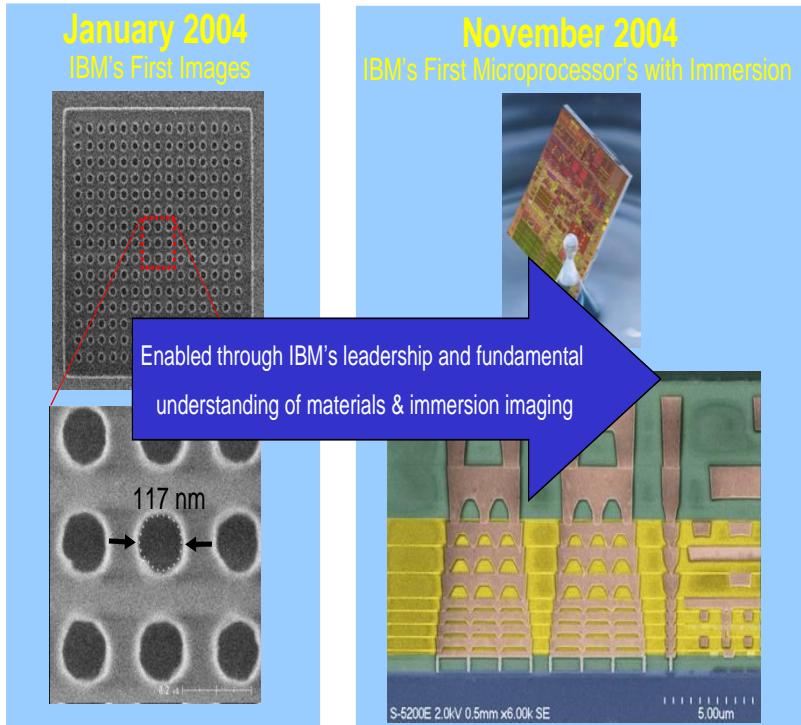
- New York State
- IBM
- SUNY Albany / CNSE
- Leading edge semiconductor partners
- Equipment & Material Suppliers
- SEMATECH HQ

Site population has more than doubled over last 3 years

Albany NanoTech Research Facility Capability

A unique and one of a kind partnership between New York State, IBM, SUNY and leading edge semiconductor partners from around the globe on a *state of the art manufacturing/pilot line*.

Developing a world class high technology work force for New York, IBM and the world.


No corollary exists in the industry for collaboration between academia, State government, and industry

Albany NanoTech Early Achievements

➤ *First demonstration of immersion lithography*

1st example - IBM Litho Research...leadership solutions at Albany Nanotech

➤ *World's Smallest SRAM Flycell*

Production News

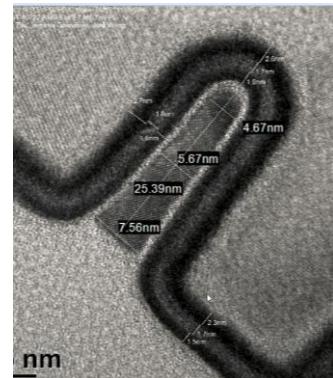
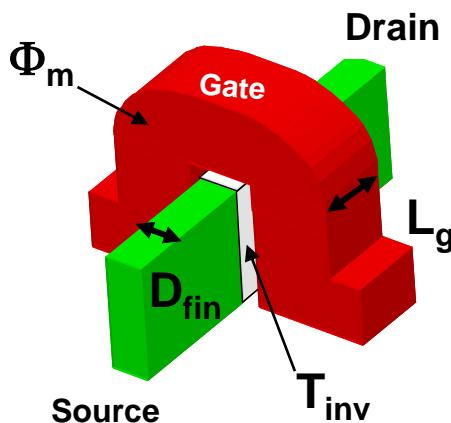
IBM claims 22-nm SRAM success

By Peter Clarke

(08/18/08, 10:27:00 AM EDT)

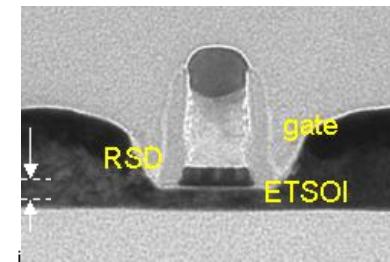
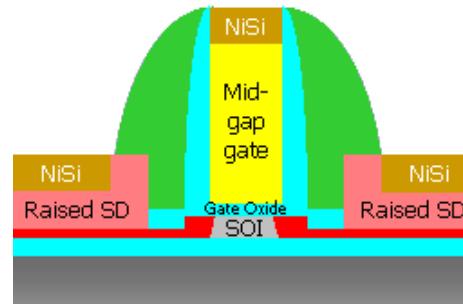
LONDON — IBM and its joint development partners Advanced Micro Devices Inc., Freescale, STMicroelectronics, Toshiba and the College of Nanoscale Science and Engineering, have claimed they have developed the first working SRAM cell implemented in a 22-nm manufacturing process. The cell was built at CNSE's 300-mm research facility in Albany, New York.

IBM and AMD Outpace Intel in Developing New Production Technologies

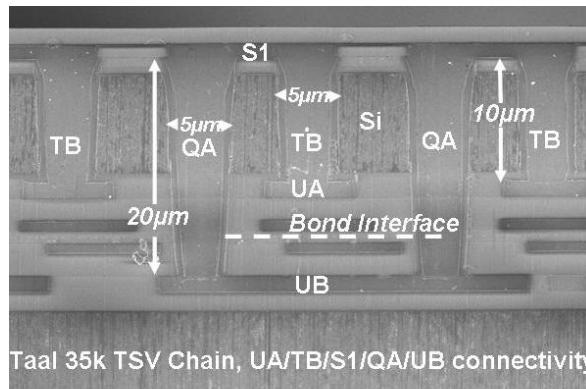
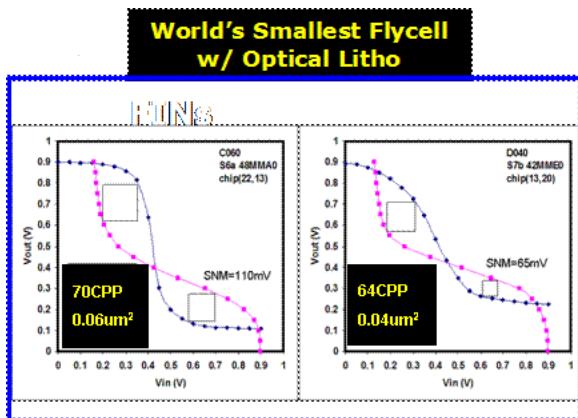


[08/18/2008 05:09 PM] by Ilya Gavrilchenkov

IBM and its joint development partners - AMD, Freescale, STMicroelectronics, Toshiba and the College of Nanoscale Science and Engineering (CNSE) - today announced the first working static random access memory (SRAM) for the 22 nanometer (nm) technology node, the world's first reported working cell built at its 300mm research facility in Albany, NY.

Albany NanoTech Recent Achievements



➤ 3D FinFET Innovation

- 14nm & 10nm Products

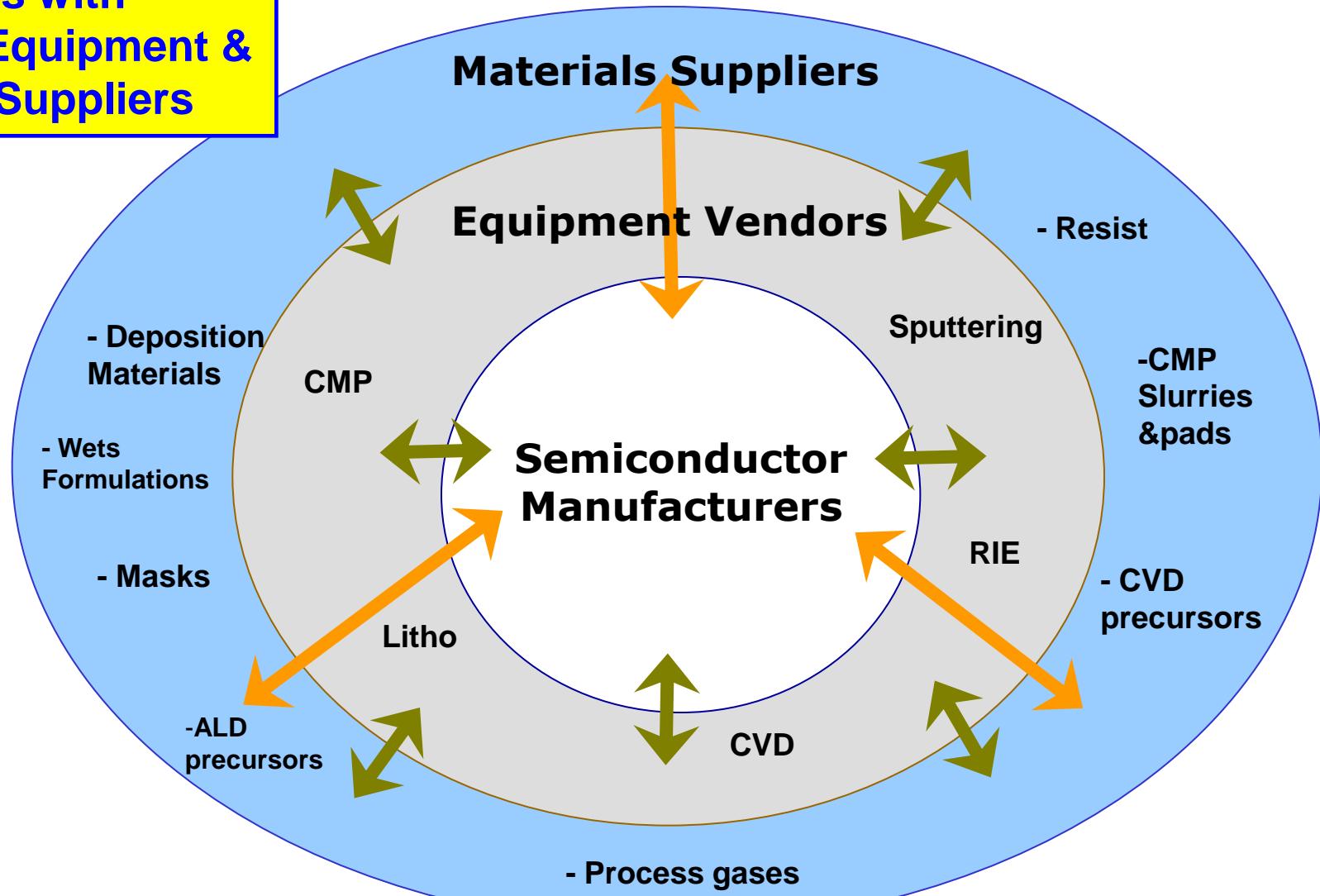



➤ FD-SOI Innovation

- IBM Partner 28nm Product

➤ 3Di innovations

Taal 35k TSV Chain, UA/TB/S1/QA/UB connectivity


NFX: Site of EUV Center of Excellence at Albany


Leadership in Albany

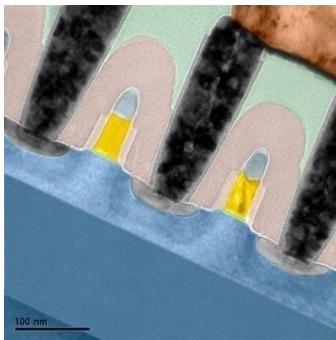
Expanding Universe of Collaboration

24 Projects with
14 Major Equipment &
Materials Suppliers

Innovation Fueled by Collaboration: Albany Example

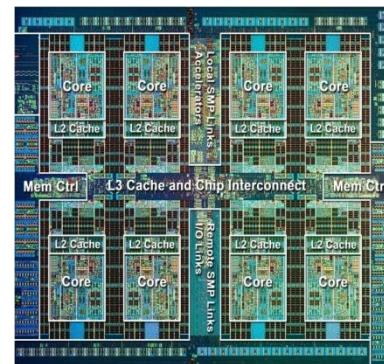
Canon CANON ANELVA CORPORATION

Accelerating the next technology revolution.



Equipment Development Center (EDC)
Albany Innovation Conference – April 2013

© 2013 IBM Corporation


Design-Technology Co-Optimization: *From Atoms and Molecules to Supercomputers*

End-to-End Materials and Technology
Innovation and Enablement
for Semiconductor Chips and
Computing Systems

NanoDevice
technology

Atoms and
Molecules :
Materials
Innovation

Electronic
Design and
Processor
Enablement

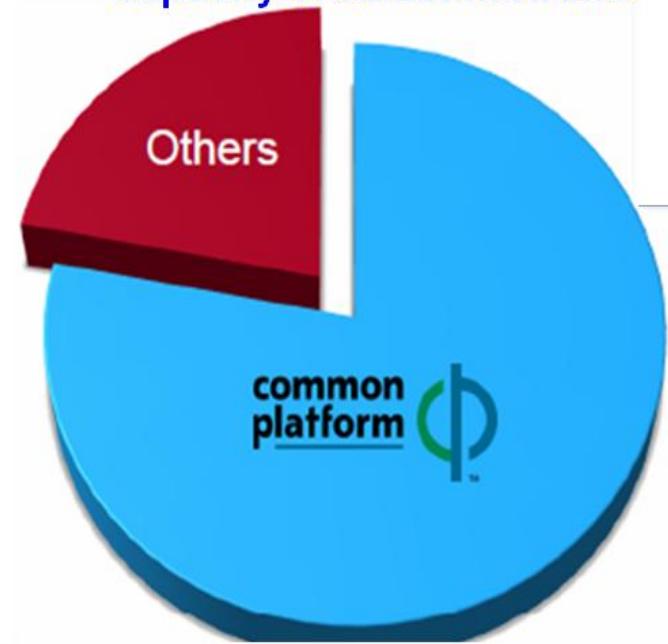
Servers and Supercomputers

Power 7+ Process Chip

- 567mm² 32nm SOI eDRAM technology
- Eight processor cores
- 80MB on chip eDRAM shared L3
- Equivalent function of 5.4B transistors due to eDRAM efficiency

Design-Technology Co-Optimization: Quad Core Processor *inside a phone*

IBM Alliance 32nm LP

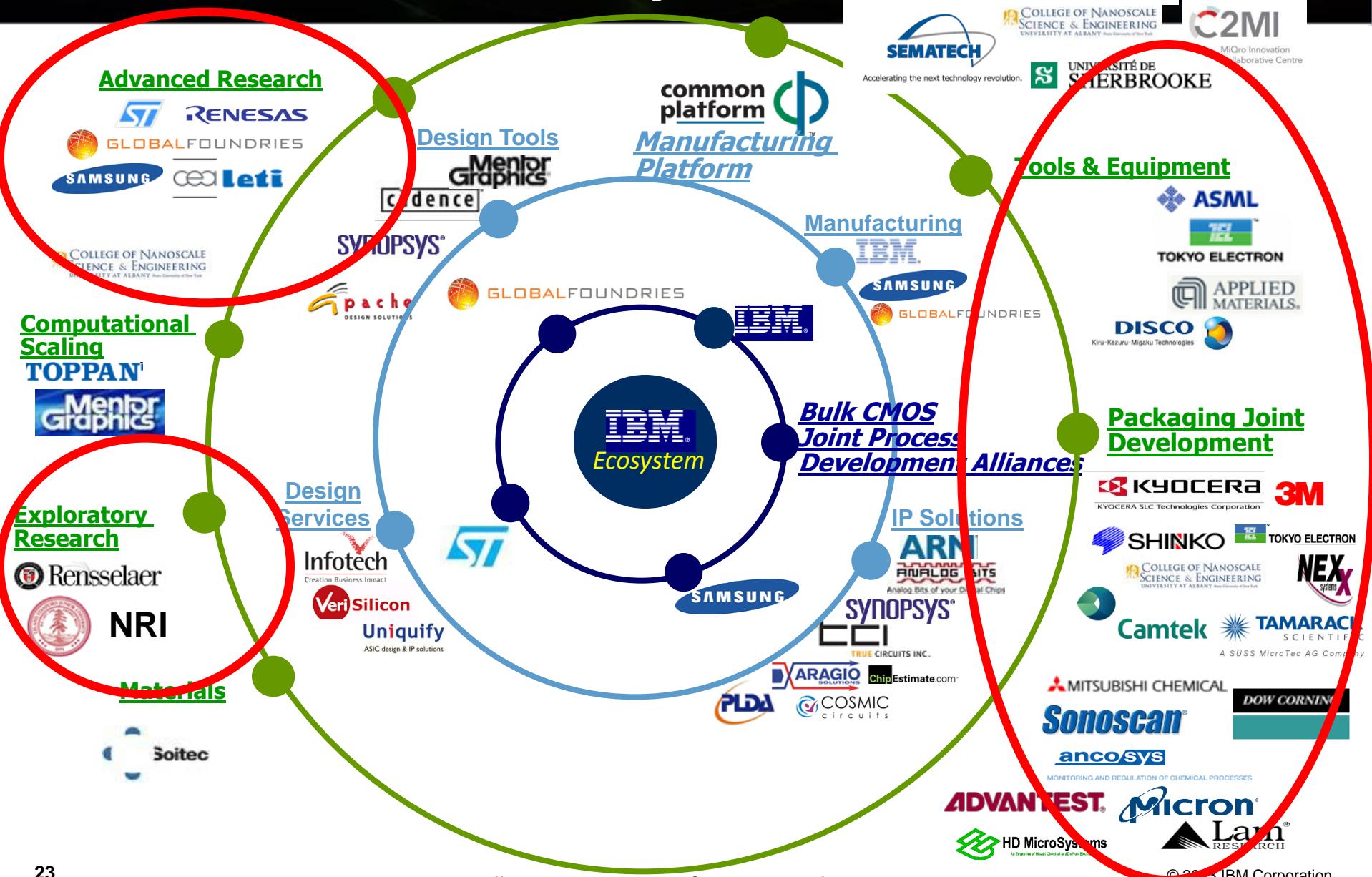

High-k Metal Gate First Process

Twice the logic density of 45nm processes

while maintaining low power:

Ideal for mobile applications

IBM Alliance foundries have highest capacity of 32/28nm HKMG



[4Q12, World Wide 32/28nm Foundry Capacity]

Courtesy: Samsung, CPTF, Feb. 2013

Source: <http://www.samsung.com/global/business/semiconductor/minisite/Exynos/products4quad.html>

Innovation is Fueled by Growing Collaborative Ecosystem

IBM @ Albany NanoTech Summary

- **IBM's Research capability at Albany is unparalleled in the Industry**
 - Fast TAT for integrated end-to-end processing
 - Flexibility for Materials & Process Research
 - Collaborative Model working very well and currently focused on 14 nm and beyond roadmap
- **The Albany Site continues to expand significantly in scope & size**
 - 200mm → 300mm state of the art silicon facility
 - New Advanced Packaging Center
 - New EUV Center of Excellence
 - Increase in presence and investment by tooling suppliers
 - Equipment Development Center
 - G450 Consortia commenced
- **IBM @ Albany NanoTech is *Extremely Well Positioned to Push the Limits of Conventional Scaling and Evaluate New Device Ideas***

New York State High Tech Semiconductor Corridor

GlobalFoundries Malta Fab 8

- Next Generation semiconductor plant to have 300,000 sq ft manufacturing capacity

Albany NanoTech

- World class 300mm Research facility formed through Industry-Government collaboration
- 300mm silicon facility, Advanced Packaging Center, and EUV Center of Excellence

IBM East Fishkill

- 300mm Semiconductor Development and Manufacturing
- Evolutionary and revolutionary Packaging Technology

IBM Yorktown Research Center

- Fundamental research exploring new materials/process/paradigms
- Multiple additional research labs worldwide

Summary

- Technology advances increasingly require innovation and “disruptive” approaches to enable cost effective solutions
- Technology, resources and financial challenges are dictating a collaborative business model to drive advances
- IBM has been a pioneer in setting up collaborative ecosystems to drive technology solutions
- Collaborative Albany, NY Model Demonstrated Outcomes:
 - ❖ Technology Innovations
 - ❖ Employment Growth
 - ❖ “High-Tech manufacturing, R&D Corridor” in North-east USA
- Semiconductor fabs are THE critical “center pieces” for such broad Electronic Systems Design and Manufacturing ecosystems