Costs and Benefits of Eyewitness Identification Reform

Steven E. Clark

Department of Psychology
Presley Center for Crime and Justice Studies
University of California, Riverside
• Trade-off between false identifications avoided (benefits) and correct identifications lost (costs)
• Blind lineup administration
• Confidence and accuracy
Eyewitness Identification Reform

1. Instruct the witness that the perpetrator may or may not be in the lineup. (unbiased instructions)
2. Present the lineup sequentially rather than simultaneously
3. Present a fair, unbiased lineup: The foils should be selected so that the suspect does not stand out.
4. Lineup administrator should not influence the witness (blind lineup administration).
THE FUNDAMENTAL CLAIM:
These reforms increase the accuracy of eyewitness identification

• **Accuracy** = A high correct identification rate (of suspects who are guilty) and a low false identification rate (of suspects who are innocent).
These reforms increase the accuracy of eyewitness identification

- **Strong version (No Cost Claim).** Reforms increase accuracy, either by reducing the false identification rate, with little or no loss of correct identifications, or by increasing the correct identification rate, with little or no increase in false identifications.

<table>
<thead>
<tr>
<th></th>
<th>CORRECT</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-RECOMMENDED</td>
<td>.50</td>
<td>.20</td>
</tr>
<tr>
<td>RECOMMENDED</td>
<td>.50</td>
<td>.10</td>
</tr>
</tbody>
</table>
These reforms increase the accuracy of eyewitness identification

• **Strong version (No Cost Claim).** Reforms increase accuracy, either by reducing the false identification rate, with little or no loss of correct identifications, or by increasing the correct identification rate, with little or no increase in false identifications.

<table>
<thead>
<tr>
<th></th>
<th>CORRECT</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-RECOMMENDED</td>
<td>.50</td>
<td>.10</td>
</tr>
<tr>
<td>RECOMMENDED</td>
<td>.70</td>
<td>.10</td>
</tr>
</tbody>
</table>
These reforms increase the accuracy of eyewitness identification

- **Weak version (Low cost claim).** The reforms have an effect on both correct and false identification rates, but the effects are disproportional, thus increasing overall accuracy.

<table>
<thead>
<tr>
<th></th>
<th>CORRECT</th>
<th>FALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-RECOMMENDED</td>
<td>.50</td>
<td>.20</td>
</tr>
<tr>
<td>RECOMMENDED</td>
<td>.48</td>
<td>.10</td>
</tr>
</tbody>
</table>
No Cost Claim
(Strong Accuracy Claim)

• Recommended procedures produce only benefits and no costs.
• The policy decision is uncomplicated.
• The recommended procedures are objectively correct and policy is specified by the data.
• To not implement the recommended procedures would be irrational.
The No Cost View is widely held.

- By researchers,
- Legal scholars
- Policy-makers
- Textbooks
- Popular media
The No Cost View is widely held.

- Researchers:
 - “We have taken great care to recommend procedures that do not serve to reduce the chances that the guilty ... will be identified.” Wells et al. (1998).
 - “…decades of laboratory research showing that the sequential procedure reduces mistaken identifications with little or no reduction in accurate identifications.” (Wells et al., 2011)
Basis of the No Cost Claim

• Early data, some misinterpreted data, and a theory (based on a distinction between absolute and relative judgments) that appeared to account for it.
Signal Detection Theory

• Correct and false identification rates should covary.
Data
<table>
<thead>
<tr>
<th></th>
<th>CORRECT</th>
<th>FALSE</th>
<th>d’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biased Ins.</td>
<td>.59</td>
<td>.15</td>
<td>1.40</td>
</tr>
<tr>
<td>Unbiased Ins.</td>
<td>.50</td>
<td>.09</td>
<td>1.38</td>
</tr>
<tr>
<td>Simultaneous</td>
<td>.54</td>
<td>.15</td>
<td>1.27</td>
</tr>
<tr>
<td>Sequential</td>
<td>.43</td>
<td>.09</td>
<td>1.24</td>
</tr>
<tr>
<td>More influence</td>
<td>.58</td>
<td>.21</td>
<td>1.14</td>
</tr>
<tr>
<td>Less Influence</td>
<td>.45</td>
<td>.11</td>
<td>1.25</td>
</tr>
<tr>
<td>Less Similar</td>
<td>.67</td>
<td>.31</td>
<td>1.09</td>
</tr>
<tr>
<td>More Similar</td>
<td>.59</td>
<td>.16</td>
<td>1.36</td>
</tr>
<tr>
<td>Susp. Match</td>
<td>.46</td>
<td>.07</td>
<td>1.38</td>
</tr>
<tr>
<td>Desc. Match</td>
<td>.53</td>
<td>.15</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Reconciling No Cost and Low Cost claims with extant data

• **Sequential > Simultaneous:** Steblay et al. (2011)

• **Sequential = Simultaneous:** Clark (2012); Palmer & Brewer (2012)

• **Sequential < Simultaneous:** Mickes et al. (2012); Gronlund et al. (2012); Dobolyi & Dodson (2013)
 – Analysis of the wrong data
 – Statistical artifacts and problems
 – Inclusion and exclusion criteria
 – Selective publication
Focusing on the wrong data

Nancy K. Steblay
Augsburg College

Jennifer E. Dysart
John Jay College of Criminal Justice

Gary L. Wells
Iowa State University

A decade ago, a meta-analysis showed that identification of a suspect from a sequential lineup versus a simultaneous lineup was more diagnostic of guilt (Steblay, Dysart, Fulero, & Lindsay, 2001). Since then, controversy and debate regarding sequential superiority has emerged. We report the results of a new meta-analysis involving 72 tests of simultaneous and sequential lineups from 23 different labs involving 13,143 participant-witnesses. The results are very similar to the 2001 results in showing that the sequential lineup is less likely to result in an identification of the suspect, but also more diagnostic of guilt than is the simultaneous lineup. An examination of the full diagnostic design dataset (27 tests that used the full simultaneous/sequential × culprit-present/culprit-absent design) showed that the average gap in correct identifications favoring the simultaneous lineup over the sequential lineup—8%—is smaller than the 15% figure obtained from the 2001 meta-analysis (and from the current full 72-test dataset). The lower error rate incurred for culprit-absent lineups with use of a sequential format remains consistent across the years, with 22% fewer errors than simultaneous lineups. A Bayesian analysis shows that the posterior probability of guilt following an identification of the suspect is higher for the sequential lineup across the entire base rate for culprit presence/absence. New ways to think about policy issues are discussed.
Statistical Artifacts and Problems

• Ceiling effects in Target-Present (guilty suspect) lineups (Clark, 2005)
• Measurement of accuracy
 – Diagnosticity Ratio of Correct and False ID rates
 – ROC analyses
 – d’
 – Wixted: Correlation between d’ and pAUC is stronger than the correlation between C/F ratio and pAUC.
Inclusion and Exclusion Criteria

- **Included by SDW (2011); Excluded by Clark (2012) and by Palmer & Brewer (2012)**

- **Excluded by SDW (2011); Included by Clark (2012)**
 - Smith et al. (2001)
 - Gronlund et al. (2009)*
 - Douglass & McQuiston-Surrett (2006)
 - Steblay et al. (2011)

- **Lindsay Lab Effect (McQuiston-Surrett et al. 2006)**
Selective Publication

• Steblay, Dysart, & Wells (2011)
 – Comparing sequential and simultaneous lineups

<table>
<thead>
<tr>
<th></th>
<th>Correct Identifications</th>
<th>False Identifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpublished</td>
<td>-.17</td>
<td>-.19</td>
</tr>
<tr>
<td>Published</td>
<td>-.10</td>
<td>-.25</td>
</tr>
</tbody>
</table>

From Clark, Moreland, & Gronlund 2014
Long-run Expected Utility

• **Base rates.** How often are innocent suspects presented to witnesses?
 – 1/100?
 – 20/100?

• **Costs and benefits associated with outcomes.** What are the utilities and disutilities associated with eyewitness identification outcomes?
 – What is the cost of a false identification error?
 – What is the cost of a false non-identification error?
Expected Utility

\[
E[U] = \left[p(CID)u(CID) - p(FN)u(FN) \right] p(g) \\
+ \left[p(CN)u(CN) - p(FID)u(FID) \right] [1-p(g)]
\]

\[
E[U]_{SIM} = \left[p(CID_{SIM})u(CID) - p(FN_{SIM})u(FN) \right] p(g) \\
+ \left[p(CN_{SIM})u(CN) - p(FID_{SEQ})u(FID) \right] [1-p(g)]
\]

\[
E[U]_{SEQ} = \left[p(CID_{SEQ})u(CID) - p(FN_{SEQ})u(FN) \right] p(g) \\
+ \left[p(CN_{SEQ})u(CN) - p(FID_{SEQ})u(FID) \right] [1-p(g)]
\]

Key: CID = Correct ID (guilty suspect), CN= Correct non-ID (of innocent suspect)
FID = False ID (of innocent suspect), FN = False non-ID (of guilty suspect)
For the comparison of two lineup procedures, A and B, where the correct and false identification rates are lower for B than for A,

Procedure B should be preferred over Procedure A if the following inequality holds:

\[
\frac{p(FN_B)p(G) - p(FN_A)p(G)}{p(FID_A)p(I) - p(FID_B)p(I)} < \frac{u(CN) - u(FID)}{u(CID) - u(FN)}
\]

The loss of correct identifications, for B - A

The decrease in false identifications, for A - B

the cost of a false ID

the cost of a false non-ID
Blackstone (1769). “It is better that ten guilty men escape than that one innocent suffer.”
• Utility analyses force policy assumptions into the daylight.
• “The” guilty base rate is unknown.
• How should base rates contribute to policy?
 – Wells (2006) has argued that police should implement procedures to increase the guilty base rate and also implement more conservative identification procedures (i.e., sequential lineup).
 – However, that combination might put criminal justice at the “costly” end of the utility function.
 – Other problems...
Blind Lineup Administration
Blind Lineup Administration

- If one is concerned that police might deliberately or inadvertently leak their expectations regarding the lineup, a reasonable solution is to prevent the police from having expectations, a solution that would be achieved through blind lineup administration. (Clark, 2012)
Blind Lineup Administration

NJ v. Henderson (2011)

• [A] non-blind procedure can affect the reliability of a lineup because even the best-intentioned, non-blind administrator can act in a way that inadvertently sways an eyewitness trying to identify a suspect. An ideal lineup administrator, therefore, is someone who is not investigating the particular case and does not know who the suspect is.

• We find that the failure to perform blind lineup procedures can increase the likelihood of misidentification.
Data
Blind versus Non-Blind Lineup Administration

Published
- Greathouse & Kovera (2009), *Law & Human Behavior* (ssci 19, gs 57)
- Perlini & Silvaggio (2007) *Psych Reports* (ssci 1, gs 4)

Unpublished
- Beaudry (2008)
- Dysart & Fugal (2006)
- Dysart et al. (2008)
Blind Lineup Administration

- Blind lineup administration will increase the rate of false identifications, decrease the reliability of eyewitness identification evidence, and increase the rate of false convictions.
<table>
<thead>
<tr>
<th></th>
<th>Target-present</th>
<th></th>
<th>Target-absent</th>
<th></th>
<th>Collapsed across target presence</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simultaneous</td>
<td>Sequential</td>
<td>Simultaneous</td>
<td>Sequential</td>
<td>Simultaneous</td>
<td>Sequential</td>
</tr>
<tr>
<td>Identifications of suspects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biased Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-blind</td>
<td>.86 (n = 14)</td>
<td>.57 (n = 14)</td>
<td>.33 (n = 15)</td>
<td>.21 (n = 14)</td>
<td>.60 (n = 29)</td>
<td>.39 (n = 28)</td>
</tr>
<tr>
<td>Double-blind</td>
<td>.64 (n = 14)</td>
<td>.50 (n = 14)</td>
<td>.00 (n = 15)</td>
<td>.07 (n = 15)</td>
<td>.32 (n = 29)</td>
<td>.28 (n = 29)</td>
</tr>
<tr>
<td>Unbiased Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-blind</td>
<td>.47 (n = 15)</td>
<td>.79 (n = 14)</td>
<td>.14 (n = 14)</td>
<td>.14 (n = 14)</td>
<td>.31 (n = 29)</td>
<td>.46 (n = 29)</td>
</tr>
<tr>
<td>Double-blind</td>
<td>.43 (n = 14)</td>
<td>.56 (n = 16)</td>
<td>.19 (n = 16)</td>
<td>.14 (n = 14)</td>
<td>.31 (n = 30)</td>
<td>.32 (n = 31)</td>
</tr>
<tr>
<td>Foil identifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biased Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-blind</td>
<td>.14 (n = 14)</td>
<td>.36 (n = 14)</td>
<td>.47 (n = 15)</td>
<td>.64 (n = 14)</td>
<td>.31 (n = 29)</td>
<td>.50 (n = 28)</td>
</tr>
<tr>
<td>Double-blind</td>
<td>.29 (n = 14)</td>
<td>.43 (n = 14)</td>
<td>.87 (n = 15)</td>
<td>.93 (n = 15)</td>
<td>.59 (n = 29)</td>
<td>.69 (n = 29)</td>
</tr>
<tr>
<td>Unbiased Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-blind</td>
<td>.27 (n = 15)</td>
<td>.14 (n = 14)</td>
<td>.79 (n = 14)</td>
<td>.67 (n = 15)</td>
<td>.52 (n = 29)</td>
<td>.41 (n = 29)</td>
</tr>
<tr>
<td>Double-blind</td>
<td>.43 (n = 14)</td>
<td>.38 (n = 16)</td>
<td>.81 (n = 16)</td>
<td>.67 (n = 15)</td>
<td>.63 (n = 30)</td>
<td>.52 (n = 31)</td>
</tr>
<tr>
<td>Rejections of the lineup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biased Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-blind</td>
<td>.00 (n = 14)</td>
<td>.07 (n = 14)</td>
<td>.20 (n = 15)</td>
<td>.14 (n = 14)</td>
<td>.10 (n = 29)</td>
<td>.11 (n = 28)</td>
</tr>
<tr>
<td>Double-blind</td>
<td>.07 (n = 14)</td>
<td>.07 (n = 14)</td>
<td>.13 (n = 15)</td>
<td>.00 (n = 15)</td>
<td>.10 (n = 29)</td>
<td>.03 (n = 29)</td>
</tr>
<tr>
<td>Unbiased Instructions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-blind</td>
<td>.27 (n = 15)</td>
<td>.07 (n = 14)</td>
<td>.07 (n = 14)</td>
<td>.20 (n = 15)</td>
<td>.17 (n = 29)</td>
<td>.14 (n = 29)</td>
</tr>
<tr>
<td>Double-blind</td>
<td>.14 (n = 14)</td>
<td>.06 (n = 16)</td>
<td>.00 (n = 16)</td>
<td>.27 (n = 15)</td>
<td>.07 (n = 30)</td>
<td>.16 (n = 31)</td>
</tr>
</tbody>
</table>

from Greathouse & Kovera (2009)
Observer Absent

Proportion of False Identifications

0.31
0.08
0.19
0.15

Single-Blind
Double-Blind

Photoarray Procedure

Simultaneous
Sequential

Phillips et al. 1999
Blind Lineup Administration
(NJ Pattern Jury Instruction)

• A lineup administrator who knows which person or photo in the lineup is the suspect may intentionally or unintentionally convey that knowledge to the witness. That increases the chance that the witness will identify the suspect, even if the suspect is innocent. For that reason, whenever feasible, live lineups and photo arrays should be conducted by an officer who does not know the identity of the suspect.

• In this case, it is alleged that the person who presented the lineup knew the identity of the suspect. It is also alleged that the police did ... not compensate for that by conducting a procedure in which the officer did not see the photos as the witness looked at them.

• You may consider this factor when you consider the circumstances under which the identification was made, and when you evaluate the overall reliability of the identification.
Blind Lineup Administration

- Potentially a dangerous one-two punch:
 - Blind lineup administration may not actually reduce false identifications or increase accuracy.
 - But jury instructions tell jurors that it does.
 - There may be more (not fewer) false identifications, but jurors will put more trust in them.
 - More false IDs + Greater Trust = More False Convictions
problems with experimental comparisons of blind and non-blind lineup administration

• Very small n’s (14-16 subjects per cell, Greathouse & Kovera, 2009).
• Unskilled lineup administrators – who may have incentives to obtain suspect identifications, but may not know how to obtain them.
• The witness...
 – mentions the suspect:
 • *That’s an ID. Period.*
 – mentions a foil (tentatively):
 • Clarification: *Are you saying that number two is the person who you saw commit the crime, or are you saying that number two looks similar ...?*
 – is non-responsive.
 • *Take your time ... look at each photograph carefully...*
 • *Anyone in the lineup look more like him than anyone else?*
<table>
<thead>
<tr>
<th></th>
<th>Correct</th>
<th>False</th>
<th>d'</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Influence</td>
<td>.36</td>
<td>.14</td>
<td>0.72</td>
</tr>
<tr>
<td>Influence</td>
<td>.78</td>
<td>.36</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Correct Identification Rate

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Influence</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

False Identification Rate

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Influence</td>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph

- **Correct Identification Rate** vs **False Identification Rate**
- **No Influence** (filled circle)
- **Influence** (open circle)

The graph illustrates the relationship between correct and false identification rates under different influence conditions.
I’m not advocating witness nudging, manipulation, and steering.
However,

- The interactions between witnesses and lineup administrators are likely to involve a complex mix of memory compliance and memory retrieval – and there is a lot that we don’t know.

- If we are going to make a policy recommendation about blind lineup administration, we should be able to indicate what the likely outcome of that policy will be.
Normative foundations for blind lineup administration
“When one is correct 975-995 times in 1000, one comes to feel that one can believe the subject when he is confident.” (Murdock, 1974, p. 33)
Confidence and Accuracy

• Confidence “is a weak indicator of eyewitness accuracy even when measured at the time an ID is made and under relatively “pristine” laboratory conditions” Penrod & Cutler (1995, p. 830).

• “…of limited utility …” (Wells & Quinlivan 2009).
Confidence and Accuracy
Brewer et al (2013); Juslin et al. (1996); Wixted et al. (submitted)

• What is the source of this controversy?
 – properties of the point-biserial correlation
 – Interpretation of the point-biserial correlation
from Juslin, Olson & Winman (1996)
Figure 5. Observed relationship between proportion correct and confidence (A) and observed relationship between proportion correct and confidence for suspect identifications only (B) for the two retention-interval conditions from Experiment 1 of Palmer et al. (2013). Note the restricted range for the proportion correct scale in panel B.

From Wixted et al., Adapted from Palmer et al. 2013
Interpretation of r

<table>
<thead>
<tr>
<th>Study</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salk vaccine trials (1954)</td>
<td>.01</td>
</tr>
<tr>
<td>Aspirin (heart attacks)</td>
<td>.03</td>
</tr>
<tr>
<td>AZT (AIDS)</td>
<td>.23</td>
</tr>
<tr>
<td>Myelin and Multiple Sclerosis</td>
<td>.31</td>
</tr>
<tr>
<td>Interpersonal Expectancy Effects</td>
<td>.33</td>
</tr>
<tr>
<td>Confidence and Accuracy</td>
<td>.41</td>
</tr>
</tbody>
</table>

Table adapted from Rosenthal & Rosnow (2008)
57 percent: initial identification was made with low confidence.
Some caveats about confidence

• Feedback can inflate confidence (Wells & Bradfield, 1998).
• Wells & Quinlivan (2009) have raised the question as to whether the same suggestive procedures that increase the risk of false identifications also increase witness confidence in those false identifications.
 – Biased lineup composition (Ross et al., 2007)
 – Lineup administrator influence (Greathouse & Kovera, 2009; Clark, et al. 2013).
Conclusions

• Trade-off between false identifications avoided and correct identifications lost.
• Trade-off becomes more costly if GBR is high.
• No cost view is not supported by data.
• Low cost view is not supported in some cases.
• Policy decisions are not specified by the data.
• Other considerations – due process, fairness, social justice, procedural justice, and normative social values.
• The foundations of policy must be clear – To what extent is policy driven by social science versus social values?
end.
Other considerations

• Due process, fairness, and social justice.
• Policy recommendations may be based on social science and social values
Data and Due Process

• To what extent are recommendations based on (or supported by) data?
• To what extent are they based on other considerations, namely due process, beliefs about social justice, procedural justice, etc?
• We must not confuse the two.
Extras
Basis of the No Cost View
Early 1980’s Data

• One early study (Malpass & Devine, 1984) did show the No Cost pattern.

• Two others (Lindsay & Wells, 1980, 1985) were interpreted as showing the No Cost pattern (although they did not).
Theory: Relative versus Absolute Judgments
(Wells, 1984)

• **Absolute judgments**
 – “Witnesses identify the person in the lineup whose match to memory exceeds some cut-off or threshold.”

• **Relative judgments**
 – “[W]itness seems to be choosing the lineup member who most resembles the witness’s memory relative to the other lineup members.”
 – A “useful and unflawed strategy” if the suspect is guilty.
 – “fallacious”, “dysfunctional”, and “dangerous” if the suspect is innocent.
Theory: Relative versus Absolute Judgments
(Wells, 1984)

• Reforms are often viewed as shifting witnesses from relative judgment strategies to absolute judgment strategies.
 – Which, according to theory, should reduce false identification rates, but have no effect on correct identification rates.
 – The Absolute-relative judgment framework specifies the pattern of results that should be obtained.
Matching Model of Eyewitness ID
Clark (2002); Clark, Erickson, & Breneman (2011); Wixted & Mickes (in press)

\[m(L_1, M) \quad m(L_2, M) \quad m(L_3, M) \quad m(L_4, M) \quad m(L_5, M) \quad m(L_6, M) \]

BEST \quad C \quad ID \quad NO ID
Signal Detection Theories of Memory

adapted from Wixted & Mickes (in press)
adapted from Wixted and Mickes (in press)
Another trade-off?

- Background information can increase diagnostic accuracy (Loy & Irwig, 2004).

[Image of text page]
Figure 1. Areas Under the Receiver Operating Characteristic Curve for Diagnostic Tests Read With or Without Clinical Information

<table>
<thead>
<tr>
<th>Study</th>
<th>Diagnostic Test</th>
<th>Subset of Disease or Readers</th>
<th>Clinical Information</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berbaum et al. 1988</td>
<td>Chest Radiographs</td>
<td>Nonnodular Lung Disease</td>
<td>Constructed</td>
<td><.01</td>
</tr>
<tr>
<td>Berbaum et al. 1988</td>
<td>Bone Radiographs</td>
<td>Orthopedic Surgeons</td>
<td>Constructed</td>
<td><.001</td>
</tr>
<tr>
<td>Song et al. 1992</td>
<td>Chest, Abdomen, and Bone Radiographs</td>
<td>Not Applicable</td>
<td>Actual</td>
<td><.02</td>
</tr>
<tr>
<td>Berbaum et al. 1995</td>
<td>Chest Radiographs</td>
<td>Nodular Lung Disease</td>
<td>Constructed</td>
<td></td>
</tr>
<tr>
<td>Berbaum et al. 1995</td>
<td>Chest Radiographs</td>
<td>Not Applicable</td>
<td>Constructed</td>
<td><.01</td>
</tr>
<tr>
<td>Raab et al. 2000</td>
<td>Bronchial Brush Cytology</td>
<td>Not Applicable</td>
<td>Actual</td>
<td><.05</td>
</tr>
<tr>
<td>Berbaum et al. 2004</td>
<td>Pediatric Chest and Abdominal Radiographs</td>
<td>Not Applicable</td>
<td>Constructed</td>
<td><.01</td>
</tr>
<tr>
<td>Berbaum et al. 2008</td>
<td>Bone Radiographs</td>
<td>Radiologists</td>
<td>Constructed</td>
<td><.001</td>
</tr>
<tr>
<td>Berbaum et al. 2009</td>
<td>Wrist Radiographs in Children</td>
<td>Not Applicable</td>
<td>Constructed</td>
<td><.02</td>
</tr>
<tr>
<td>McNee et al. 1988</td>
<td>Head Computerized Tomography</td>
<td>Not Applicable</td>
<td>Actual</td>
<td><.05</td>
</tr>
<tr>
<td>Cooperstein et al. 1990</td>
<td>Digitized Chest Images</td>
<td>Interstitial Lung Disease</td>
<td>Actual</td>
<td></td>
</tr>
<tr>
<td>Cooperstein et al. 1990</td>
<td>Digitized Chest Images</td>
<td>Nodular Lung Disease</td>
<td>Actual</td>
<td>Not Significant*</td>
</tr>
<tr>
<td>Good et al. 1990</td>
<td>Chest Radiographs</td>
<td>Nodular Lung Disease</td>
<td>Actual</td>
<td>Not Significant*</td>
</tr>
<tr>
<td>Good et al. 1990</td>
<td>Chest Radiographs</td>
<td>Intertstitial Lung Disease</td>
<td>Actual</td>
<td>Not Significant*</td>
</tr>
<tr>
<td>Good et al. 1990</td>
<td>Chest Radiographs</td>
<td>Pneumothorax</td>
<td>Actual</td>
<td>Not Significant*</td>
</tr>
<tr>
<td>Cooperstein et al. 1990</td>
<td>Digitized Chest Images</td>
<td>Pneumothorax</td>
<td>Actual</td>
<td>Not Significant*</td>
</tr>
</tbody>
</table>
• Legal scholars
 – Garrett (2008)

• Policy-makers

• Textbooks
 – Myers (2002)

• Popular media
 – Gawande (2001, New Yorker)
 – Fenster (2012, New Haven Register)
 – Hart (2012, Houston Chronicle)
• Legal scholars
 – Garrett (2008)
• Policy-makers
• Textbooks
 – Myers (2002)
• Popular media
 – Gawande (2001, New Yorker)
 – Fenster (2012, New Haven Register)
 – Hart (2012, Houston Chronicle)
Interpersonal expectancy effects: the first 345 studies

Robert Rosenthal
Department of Psychology and Social Relations, Harvard University, Cambridge, Mass. 02138

Donald B. Rubin
Department of Statistics, Harvard University, Cambridge, Mass. 02138
(On leave from Educational Testing Service, Princeton, New Jersey)