Appropriate Technologies: To Solve Societal Problems & Create Entrepreneurship

Moses Kizza Musaazi, PhD, DIC mkmusaazi@t4tafrica.co www.t4tafrica.co

The Evils of Science

- President John Kennedy was asked what he feared most. He replied:
- "I fear the evils of science that can be unleashed against mankind"
- Musaazi's fear "the looming disasters as a result of using natural resources carelessly"
- What is your greatest fear???

Examples of SE

- Allow me the privilege of walking you through some of the products that are assisting in societal change through Social Entrepreneurship.
- Many of them were initiated by myself while others were challenges thrown in my face.
- Some date back to 28 years while others are of recent (>2010).
- They ARE NOT ULTIMATE SOLUTIONS!

Timber Seasoning Plant

- Challenge: Carpenters unable to afford electric timber seasoning.
- Prevailing Situation: Furniture made from unseasoned timber wobbles in unsatisfied customers in reduced sales.
- Current Intervention: seasoning timber
 (i) under the shade (6-12 months)
- (ii) direct sunshine (external drying & cracking)

Entrepreneurship bottleneck

- Poor quality of furniture; loss of customers
- Long time (months) return on investment;
 awaiting proper timber seasoning.
- Cannot handle large orders.

Basic Science Principles

- 1. Heat source at bottom of pile of timber; hot air rising (by convection); no fan
- 2. Cheap heat/energy; affordable by carpenters.
- 3. Heat loss minimised; insulated walls
- 4. Simple temperature monitoring & control

Innovation: Appropriate Timber Seasoning Plant

- Wooden/brick box: with a metallic base sitting on a saw dust furnace.
- Results: free fuel (sawdust); operated by security man; seasoning softwood & hardwood in 7 & 14 days respectively.
- Entrepreneurship: Carpenter seasons timer for others at a fee. An entrepreneur sells seasoned timber.

Timber Seasoning Plant

Timber Seasoning Plants in use

Commercial TSP

Housing, Water & Food

- Challenges:
- 1. Housing; poor and/or unaffordable.
- 2. Water; not enough & contaminated.
- 3.Food; not enough & poorly stored.

- 4. Environmental degradation.
- 5. Poverty, poor health, low education.

Prevailing situation:

- 1. Wall construction (esp. Houses) by fired clay/earth bricks: → low & checked quality of bricks → expensive & weak structures.
- 2. Trees cut indiscriminately
 reduced forest coverage
 reduced rains, etc.
- 3. Plastic & metallic water tanks: expensive & short life.
- 4. Poor housing, sanitation & water; increasing problem.

Fired bricks; swamp & hardwood destruction

Destroyed Swamp & trees

Firing bricks; high cost & inefficient

Kiln; not insulated & low efficiency

Makerere University construction; its carbon footprints

Quality Fired Bricks?

Plastic Rainwater Harvesting Tank (protected!)

ISSB production; cheaper & protects environment

ISSB Production

Comparison: ISSB with fired bricks

ISSB wall; fast, cheap & neat

Fired bricks wall; slow, A lot of cement & not neat

Innovated Granary by MKM

Granary Loading

Granary Loading

Improving housing at low cost while protecting environment

House & water tank from ISSB in 14 days!

Modernizing the African Hut

Homestead for the poor

Modernizing African Homestead

Thin Shell Concrete: Modernizing grass thatched roofs

Typical rural school (Uganda)

ISSB Classroom Block & Water Tank

Completed ISSB Classroom Block

Lined Pit Latrine Construction: no formwork for the slab

Lined VIP from ISSB

VIP: with rainwater Hand washing & bathing facilities

Toilet with an incinerator

Sanitary pads are properly disposed of

25,000-litre ISSB Water Tank @ Primary School

Teachers' Houses, complete with rainwater harvesting, from ISSB

Medical Solid Waste Management: by Incineration

- Challenge: To manage medical solid waste (syringes, gloves, bottles & accessories); by safe disposal methods.
- Prevailing Situation:
- 1. Proper incineration in 2 hospitals and none in others & health centres.
- 2. Others; waste pits, open burning or bush dumping.
- 3. Cumulative dangerous waste; water, ground and atmospheric contamination.

Current Intervention

- 1. Imported, electric or diesel incinerators; expensive to buy and maintain.
- 2. Locally built, brick incinerators; temperature below required minimum (650 deg. C) and incomplete incineration.

Science & Design

- Science: Metal attains high temperatures faster than clay bricks. Heat stored in clay brick is waste.
- Hence clay brick incinerators; slow & inefficient.
- Design:
- 1. Metallic incinerator.
- 2. Self-heat generation from plastics.
- 3. Series burning; total incineration.

Product: MAK V

- Incinerator MAK V:
- 1. Metallic, sand insulated.
- 2. Triple incineration.
- 3. **Smokeless** output.
- 5. Zero energy input; 100% self-energy generation.

Field Testing MAK V

MAK V Development

MAK V @ Nsambya Hospital

Hybrid Cook Stove in use at Greenhill Academy, Buwaate

Solar Water Heating (SWH) facility being used by a pupil

- In 2001, the Rockefeller Foundation (RF)
 requested me to engage Architecture & Civil
 Eng. students to design an appropriate pit
 latrine for a primary school; to improve
 hygiene.
- Afterwards, RF requested me to use the winning design and construct the toilet for a primary school.

- Then RF expressed the deeper underlying problem; sanitary pads.
- The sanitary pads supplied to schoolgirls were filling up the pit latrines (and possibly increasing the stench).
- They requested me to come up with an appropriate way of disposing of used sanitary pads.

- RF finally told me of the most critical problem:
- Their support research had discovered that schoolgirls were:
- 1. avoiding school during their menstrual days; 3-5 days per month.
- 2. using pieces of cloth, paper, leaves, etc as alternatives to sanitary pads.
- 3. performing poorly in P5-P7.
- 4. dropping out of school in P5-P7.

- The cause of the all above; failure to access affordable sanitary pads.
- RF then tasked me to innovate a type of sanitary pad that is:
- 1. non-reusable
- 2. made out of local materials (as far as possible)
- 3. made in a cottage type of industry
- 4. sell price not to exceed US\$ 0.05

- RF offered me a grant of US\$ 78,000 (100% request).
- After 30 months of R&D, I innovated sanitary pads made out of papyrus and paper and costing US\$ 0.03 @, and meeting all other criteria.
- The pads are trademarked "MakaPads", patented and commercialized.

MakaPads:

- Have brought about huge academic and socioeconomic impacts to various sectors of people including refugees and HIV/AIDS victims.
- Are the only genuine pads made in Africa from local materials.
- Are the only chemical-free and biodegradable pads on (East) African market.

Papyrus; raw material for MakaPads

Huge & wild papyrus growth in Uganda

Fresh papyrus: carefully cut to save environment

Production of *MakaPads*

Production of MakaPads

Solar-powered factory

MakaPads production

It's MakaPads Payday!

MakaPads packets

Schoolgirls receiving MakaPads

Keep one Girl in School with a price of a sweet

- Despite the low cost of a packet of 10
 MakaPads (US\$ 0.58) the poor schoolgirls still unable to afford.
- Hence we have changed the packaging: A pack of 3 MakaPads for US\$0.15
- The poorest girl uses one pad while at school;
 US\$0.05 which is the price of a sweet.
- This is affordable!!!

Empowering People

- The Siemens Stiftung (Foundation) organized a competition called
- "empowering people.Award"
- Out of over 800 international entries

 MakaPads won 2nd Prize (Euro 30,000 = UGX 105,000,000.
- This was to recognize *MakaPads* empowering

 (i) schoolgirls with dignity to attend school (ii)
 people at the Bottom of the Pyramid with skills to get out of poverty.

Thank You