Solving Critical Materials Challenges –
An Industrial Update for GUIRR

Steve Duclos
Leader – Materials Advanced Technology Programs
GE Global Research
Niskayuna, NY

Imagination at work.

Acknowledgments: Anthony Ku and Jonathan Loudis
Outline

• Assessing Material Criticality – Industrial Criticality Diagrams
• Industrial Approaches to Criticality Solutions
• Some Examples
 • Sourcing critical materials
 • Reducing manufacturing scrap
 • Material substitutions
 • System substitutions

System Development and Material Engineering technologies are shown to be key approaches to solving critical materials challenges
GE Criticality Diagram - 2008
Impact on operations

- Revenue impacted
- % of world’s use
- Substitutability (specific applications)
- Cost pass-through (specific applications)

Supply and Price Risk

<table>
<thead>
<tr>
<th>World reserves</th>
<th>Political factors</th>
<th>Competing uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-production</td>
<td>Human factors</td>
<td>Price volatility</td>
</tr>
</tbody>
</table>
Development of Defendable Criticality Diagrams

<table>
<thead>
<tr>
<th>Supply Risk scoring</th>
<th>NRC</th>
<th>Yale</th>
<th>DOE</th>
<th>GE</th>
<th>BGS</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Year of assessment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical availability</td>
<td>60%</td>
<td>33%</td>
<td>50%</td>
<td>22%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>Reserves/Depletion time</td>
<td>20%</td>
<td>1/6</td>
<td>2/5</td>
<td>1/9</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>Companion production</td>
<td>20%</td>
<td>1/6</td>
<td>1/10</td>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycling rate</td>
<td>20%</td>
<td></td>
<td></td>
<td>1/7 Included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production</td>
<td>67%</td>
<td>40%</td>
<td>33%</td>
<td>56%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producer concentration</td>
<td>1/6</td>
<td>1/5</td>
<td>1/6</td>
<td>2/7 Included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producer stability</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producer governance</td>
<td>1/6</td>
<td>1/5</td>
<td>1/6</td>
<td>2/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producer policy</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market factors</td>
<td>40%</td>
<td>10%</td>
<td>45%</td>
<td>14%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price volatility</td>
<td></td>
<td></td>
<td></td>
<td>1/9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitutability</td>
<td>20%</td>
<td>1/6</td>
<td>1/7</td>
<td>Included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competing demand</td>
<td>20%</td>
<td>1/10</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact scoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance</td>
<td>33%</td>
<td>50%</td>
<td>75%</td>
<td>50%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Economic impact</td>
<td></td>
<td></td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usage % by population</td>
<td></td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of world’s supply used</td>
<td></td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitutability</td>
<td>33%</td>
<td>50%</td>
<td>25%</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>1/6</td>
<td></td>
<td></td>
<td>1/4</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental impact</td>
<td>1/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market factors</td>
<td>33%</td>
<td></td>
<td></td>
<td>25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost pass through</td>
<td></td>
<td></td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emerging uses</td>
<td></td>
<td>1/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Solutions to Criticality Challenges

Sourcing ... ensure supply through diversification, fixed price contracts, forwards, options, etc.

Manufacturing efficiency ... reduced waste, recycled waste, advanced manufacturing (i.e. additive)

Recycling ... manufacturing shrinkage and end-of-life products, repair, re-manufacturing

Material re-design or substitution ... reduce or eliminate at-risk element, use alternate material

System substitution ... use an alternate technology to satisfy a customer’s need
GE

- GE uses ~3 Billion lbs of raw material in our products annually
- For manufacturing companies, typically one-half of their Cost of Goods & Services Sold is spent on materials. For GE, translates to ~$40 B/yr
- GE uses at least 75 of the first 83 elements on the periodic table
Example: Rare earth elements

- >90% produced in China
- Prices peaked at 10-20x in mid-2011

Fluorescent lamp phosphors
- Y, Ce, Tb, La, Eu

White LED phosphors
- Y, Ce, Tb, Eu

Industrial motors
- Nd, Dy, Tb

Thermal barrier coatings for gas turbines and aircraft engines
- Y

Scintillators for CT & PET imaging
- Y, Ce, Tb, Gd, Eu, Lu

Generators for 2.5MW+ wind turbines
- Nd, Dy, Tb
Sourcing

Diversifying the supply chain

Revisiting raw material specs

Ku et al., JOM 2014

© 2015 General Electric Company - All rights reserved
Manufacturing efficiency

Recovery and reuse of manufacturing scrap
Substitution

Materials R&D

Alternate system designs

New magnet materials

New phosphor materials

F. Johnson, GE Global Research

Emission Intensity

Wavelength (nm)

400 450 500 550 600 650 700

0 0.2 0.4 0.6 0.8 1 1.2

Triphosphor

RED

GREEN

LEDs for lighting

DFIGs for wind

© 2015 General Electric Company - All rights reserved
Summary

• Criticality diagrams have developed since 2008

• Critical elements change with time – rare earth criticality reduced

• Systems and materials engineering can reduce the criticality risks