

Solving Critical Materials Challenges – An Industrial Update for GUIRR

Steve Duclos

Leader – Materials Advanced Technology Programs
GE Global Research
Niskayuna, NY

Imagination at work.

Acknowledgments: Anthony Ku and Jonathan Loudis

Outline

- Assessing Material Criticality – Industrial Criticality Diagrams
- Industrial Approaches to Criticality Solutions
- Some Examples
 - Sourcing critical materials
 - Reducing manufacturing scrap
 - Material substitutions
 - System substitutions

System Development and Material Engineering technologies are shown to be key approaches to solving critical materials challenges

GE Criticality Diagram - 2008

GE Criticality Diagram

imagination at work

11 /12
S. Duclos
5/27/15

GE Criticality Diagram - 2012

Impact on operations

- Revenue impacted
- % of world's use
- Substitutability (specific applications)
- Cost pass-through (specific applications)

Supply and Price Risk

World reserves	Political factors	Competing uses
Co-production	Human factors	Price volatility

Development of Defendable Criticality Diagrams

Supply Risk scoring	NRC	Yale	DOE	GE	BGS	EU
# of Materials	11	62	14 (2010)	33 (2008)	52 (2011)	41 (2010)
(Year of assessment)	(2007)	(2008)	16 (2011)	53 (2012)	41 (2012)	54 (2013)
Physical availability	60%	33%	50%	22%	29%	
Reserves/Depletion time	20%	1/6	2/5	1/9	1/7	
Companion production	20%	1/6	1/10	1/9		
Recycling rate	20%				1/7	Included
Production	67%	40%	33%	56%		
Producer concentration	1/6	1/5			2/7	Included
Producer stability	1/6					
Producer governance	1/6	1/5	1/6	2/7		
Producer policy	1/6		1/6			
Market factors	40%	10%	45%	14%		
Price volatility			1/9			
Substitutability	20%			1/6	1/7	Included
Competing demand	20%		1/10	1/6		
Impact scoring						
Importance	33%	50%	75%	50%		100%
Economic impact				1/4		
Usage % by population		1/2				
% of world's supply used				1/4		
Substitutability	33%	50%	25%	25%		
Performance		1/6		1/4		Included
Availability		1/6				in
Environmental impact		1/6				supply risk
Market factors	33%			25%		
Cost pass through				1/4		
Emerging uses	1/3					

Solutions to Criticality Challenges

Sourcing ... ensure supply through diversification, fixed price contracts, forwards, options, etc.

Manufacturing efficiency ... reduced waste, recycled waste, advanced manufacturing (i.e. additive)

Recycling ... manufacturing shrinkage and end-of-life products, repair, re-manufacturing

Material re-design or substitution ... reduce or eliminate at-risk element, use alternate material

System substitution ... use an alternate technology to satisfy a customer's need

GE

- GE uses ~3 Billion lbs of raw material in our products annually
- For manufacturing companies, typically one-half of their Cost of Goods & Services Sold is spent on materials. For GE, translates to ~\$40 B/yr
- GE uses at least 75 of the first 83 elements on the periodic table

Example: Rare earth elements

- >90% produced in China
- Prices peaked at 10-20x in mid-2011

Y, Ce, Tb
La, Eu

Fluorescent lamp
phosphors

Y, Ce,
Tb, Eu

White LED phosphors

Nd, Dy, Tb

Industrial
motors

Y

Thermal barrier coatings
for gas turbines and
aircraft engines

Y, Ce, Tb
Gd, Eu, Lu

Scintillators for CT &
PET imaging

Nd, Dy, Tb

Generators for
2.5MW+
wind turbines

Sourcing

Diversifying the supply chain

Revisiting raw material specs

Manufacturing efficiency

TBC overspray

Scintillator scrap

He recovery

Recovery and reuse of manufacturing scrap

Substitution

Materials R&D

Alternate system designs

New magnet materials

F. Johnson, GE Global Research

New phosphor materials

LEDs for lighting

DFIGs for wind

Summary

- Criticality diagrams have developed since 2008
- Critical elements change with time – rare earth criticality reduced
- Systems and materials engineering can reduce the criticality risks

