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Criticality —
The quality, state, or degree
of being of the highest
Importance



Critical minerals and their primary source countries (EU, 2014)
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If we need more, why don’t
we mine more?
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The Host-Companion Flower Garden of Metals
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The “companionality” of metals
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If something is scarce,
why don’t we
recycle more?



Contributions of Recycling in a Growing Economy
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End-of-life recycling rates for sixty-two metals
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If something is scarce,
why don’t we
substitute something else?



Substitutability

Copper Example: Stage 1 — Identify Uses and Use Fractions
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The degree of substitutability of metals in current applications

Y: Phosphors

Rh: Catalytic converters
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The Yale 3-Axis Approach
to Criticality



Vulnerability to Supply Restriction
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Indium criticality — global level

c
o o
- 2
Q
e
ofd
Q
x = I
- N
=) ‘
o
S5 o
m o
(@]
ofd
:'? o 100 (\9
5 o0
80 7o)
] ‘\(&
S
) 60 ((\Q
= = Q\\
= 40 X!
> z'°
20 o‘°
(8
AY
o 0 4\

T T T T Q
0 20 40 B0 80 100 <

Supply Risk



The three-dimensional criticality of the 62 metals of the periodic table
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Global-Level Criticality Assessment: Supply Risk and Vulnerability Axes

100

VSR

O T I I I

0 20 40 SR 60 80 100
L

® Light metals ®Specialty metals “Iron & its principal alloying elements ®Superalloy metals ® Copper group

®Zinc, tin, lead group ®Rare earth elements ®Nuclear energy metals ®Platinum-group metals



Global-Level Criticality Assessment: Supply Risk and Environmental Axes
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Characteristics of High Criticality

* Largely or entirely available only as a
byproduct of more abundant metals

* Used in small quantities in specialized high-
technology applications

e Has no suitable substitute or substitutes
across its spectrum of uses



Summary

* |n addressing the minerals availability issue, our Yale research
group has completed evaluating the criticality of 62 metals at
the global and US levels, including studies of substitutability,

by-products, and recycling potential

* Aspects and users of criticality evaluations are too diverse for
there to be a single list of “critical” or “not critical” materials

* Nonetheless, over the next 2-3 decades, the biggest
challenges appear to be for the specialty “byproduct” metals,
rather than for the major metals with which we are most

familiar



