

... Toward Safe, Secure, and Trusted Unmanned Air Systems

Unmanned Air Systems: Use & Regulation Government-University-Industry Research Roundtable

June 24, 2015

Michael S Francis, Ph.D.
Chief, Advanced Programs & Senior Fellow
United Technologies Research Center

FOCUS

- **sUAS – Unique Systems**
- **Issues and Vulnerabilities**
- **Strategies and Solutions**

UAS IN THE AIRSPACE

Some Key Criteria

- ***Capable of meeting mission needs***
 - Range-payload performance (platform)
 - Speed, timeliness, responsiveness
- ***Compatible with the operational environment***
 - All requisite mission conditions (weather, darkness,...)
 - Not disruptive to other traffic ... competing activities
 - Not intrusive (e.g. noise, nuisance, visual distraction)
- ***Trusted ... by users, stakeholders, and the public***
 - Reliable ... vehicle, system and mission level
 - Safe
 - Secure
 - Not a perceived as a threat

Small UNMANNED AIR SYSTEMS (sUAS)

... Unique Class of Systems

Today's sUAS ...

Air Vehicle*

Line-of-sight, Continuous
Communications

*DJI Phantom 1.1.1 Quadcopter with
GoPro Camera ... ~2.5 lb. Total weight

Several Orders
of Magnitude in
Size, Weight &
Power

(Mostly) Manual
Flight/Mission Control

Air Vehicle Variety
Examples... < 55 lb. TOGW

SMALL UNMANNED AIR SYSTEMS (sUAS)

... Limited air vehicle size, weight, power & propulsion

- Small Physical Size ...
 - Limits “real estate” ... reduces options for sensor apertures/antennas
 - Invokes need for component synergy ... shared platform infrastructure ... especially, sensors
 - Alters the approach to physical integration for the smallest platforms
- Weight Limitations...
 - Constrain overall payload capacity (mass)
 - Invite tradeoffs with performance ... range/endurance
- Propulsion and Power Constraints...
 - Tightly coupled attributes
 - Limit ability to compete with winds ... weather
 - Limit payload, sensor types and attributes
 - Limit onboard computational capability
 - Affect communications ... signal strength(s), bandwidth,...
 - Unique aerodynamic attributes (low Reynolds number) for the very small vehicles

Today's Commercial sUAS ...

ISSUES & VULNERABILITIES

Air Vehicle Limitations and Constraints

- Flight environment compatibility
 - Lightly loaded airframes ... varies across vehicle sizes/types
- Airframe pedigree ... for smaller UAS
 - Some manufacturers lack aerospace 'know-how'...adherence to standards
 - Fragile construction ... structural integrity
 - Exposed propellers/rotor risks, in many designs
 - No provisions for consequences of collision/impact

System-level Command & Control Vulnerabilities

- Limited operator situation awareness
 - Many systems lack an 'out-the-cockpit' perspective
 - Requirement for constant vigilance ... workload
- Communications challenges
 - Latency or degraded communications precludes real time control
 - Limited spectrum available (... especially challenging for active payload operations)
 - No accepted beyond-line-of-sight (BLOS) solution for smallest platforms
 - Susceptibility to hostile disruption or exploitation possible ... multiple sources

DIVERSE OPERATIONAL ENVIRONMENTS

- Extremely Low Altitudes
 - ... 500 ft. down to 'the blades of grass'
- Few missions exploit VLOS, daylight operations with limited human presence
 - 'Above-the-clutter' solutions appear viable in the near term
- Obstacle-rich Topology ... is typical
 - Buildings, trees, wires, vehicles, other protuberances ... can be dense
 - Communications challenges ... especially beyond-line-of-sight (BLOS)
 - Gusting, unpredictable winds and other perturbation sources
- Close Proximity to humans for many missions... incidental and intentional
- Air Traffic Management ... today's rules are inadequate

...TOWARD STRATEGIES & SOLUTIONS

- Improve Vehicle-Operator Communications for Situation Awareness
 - Create capability for connectivity ‘on demand’
 - e.g. cellular net access is being explored
 - Develop methods to reduce latency ... especially for C2 operations
- Reduce the Level and Predictability of Operator Interactions
 - Increase the level of vehicle *autonomy* ... create a smarter machine
 - Exploit “distributed intelligence”
 - Relax the need for real time operator interactions
 - ... for situation awareness
 - Reduce contact time for mission and vehicle control
 - Enable lower bandwidth, higher level interactions
 - Enable novel communications security strategies – e.g. ...
 - Novel wave-form and connectivity approaches ... unpredictable message timing
 - Non-traditional network security architectures
- Develop Active Sensing Strategies that Reduce Threat Exposure

AUTONOMY ... TODAY

- Basic Flight Functions ...
 - Self-stabilization
 - Air vehicle flight control
 - Auto-takeoff
 - Auto-land
 - Fault and Damage tolerant control (demonstrated)
- Auto-Navigation
 - Waypoint designation
- Simple Contingency Management
 - Flight termination
 - ‘Climb and circle’
 - Return-to-base
- Elements of ‘Obstacle Avoidance’
 - Cooperative methods (e.g. ADS-B based methods)
 - Obstacle detection (LIDAR ‘point cloud’) ... for helicopters
 - Path planning algorithms
 - Visual Odometry

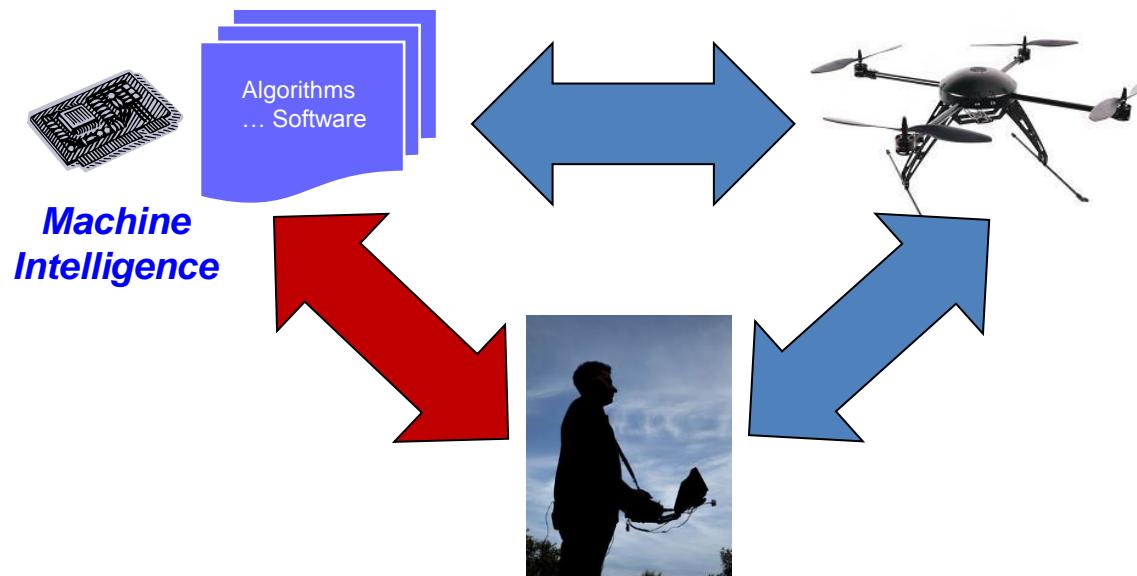
AUTONOMY ... THE FUTURE

... In the Pipeline

- Obstacle avoidance...especially for small, SWAP-limited vehicles
- GPS-denied navigation
- Collision avoidance...moving platforms
- Multi-vehicle collaboration

What's still Missing?

- Mission level autonomy
 - Federated functions vs. integrated solutions
 - Decisions requiring high levels of perception (e.g. inference)
- Mission-level contingency management
 - e.g. Weather or other threat-driven events
 - Complex multi-objective real-time re-planning
 - Subjective judgment
- Certification methodologies for intelligent software systems

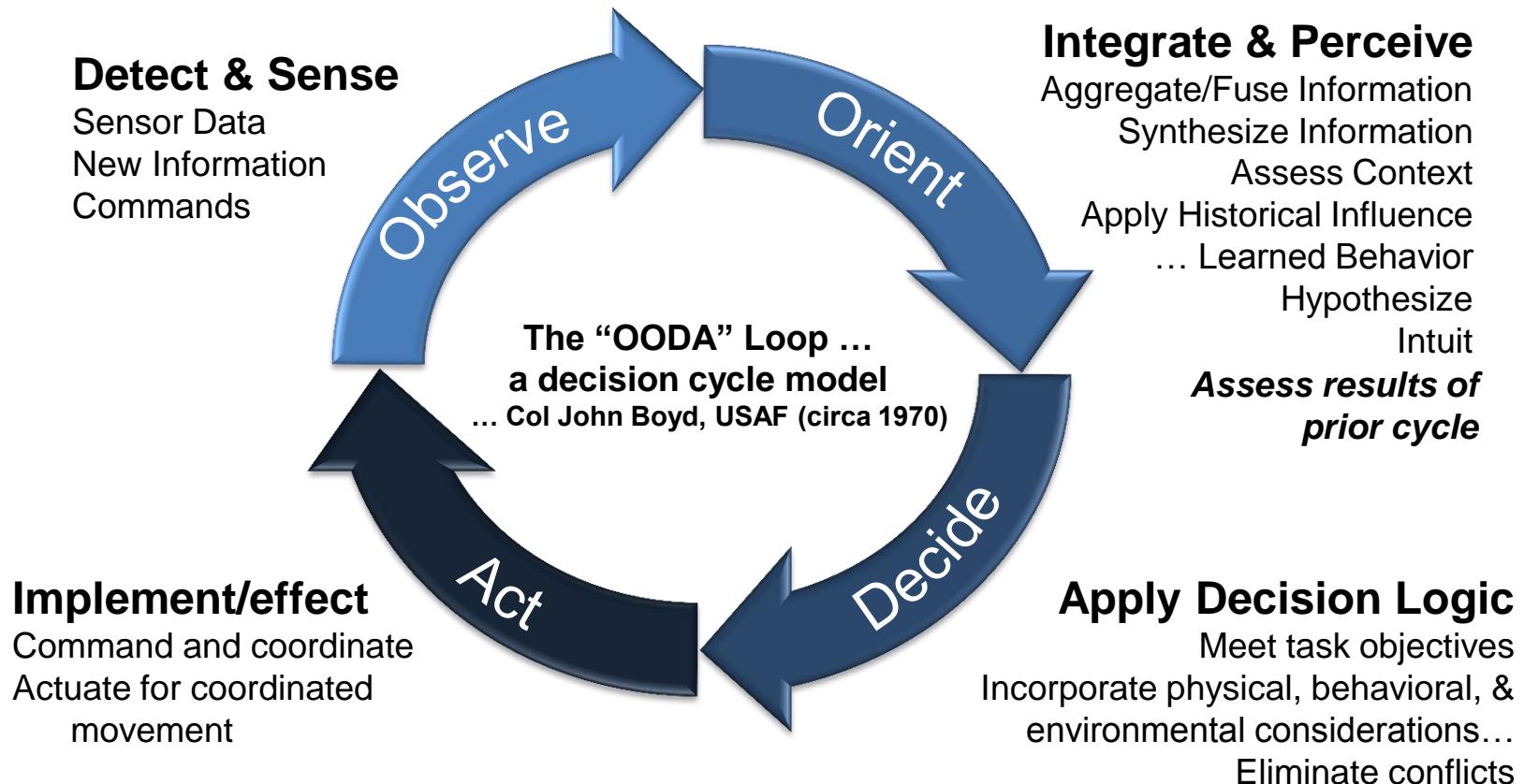

RESEARCH & TECHNOLOGY TOPICS

Short Term Focus

- Expanded autonomous capabilities
 - Mission management functions
 - Contingency response capabilities
- Novel secure communications strategies
 - Segregated communications channels ... command & control (C2) vs. payload data transmission
 - New network security ‘architecture’ concepts
 - Multi-band solutions, including cellular ... novel encryption schemes
 - Intermittent, asynchronous, hard-to-predict transmissions
 - New waveform options, spread spectrum techniques, ...
- Interactive human-machine intelligence integration
 - Integrated system is more capable than the sum-of-the-parts
- New rules for very low altitude operations (e.g. NASA UTM Program)
 - Focus on the unique environment
 - Seamless integration with the rest of the NAS architecture

RESEARCH & TECHNOLOGY TOPICS (cont)

- Build Trust in the System (V&V, Certification Processes)
 - New software & system certification approach required
 - Today, works only for precisely repeatable, predictable, deterministic systems
 - Focus on logical, adequate solutions... should cope with emergent behaviors
 - ... The analog of certifying 'human software'
 - **Need** new approach to 'intelligent software' ... what and how!
 - Key enabler for new V&V approach
 - Assessable/examinable by domain experts (... not software developers)
 - Communicates with humans at high level

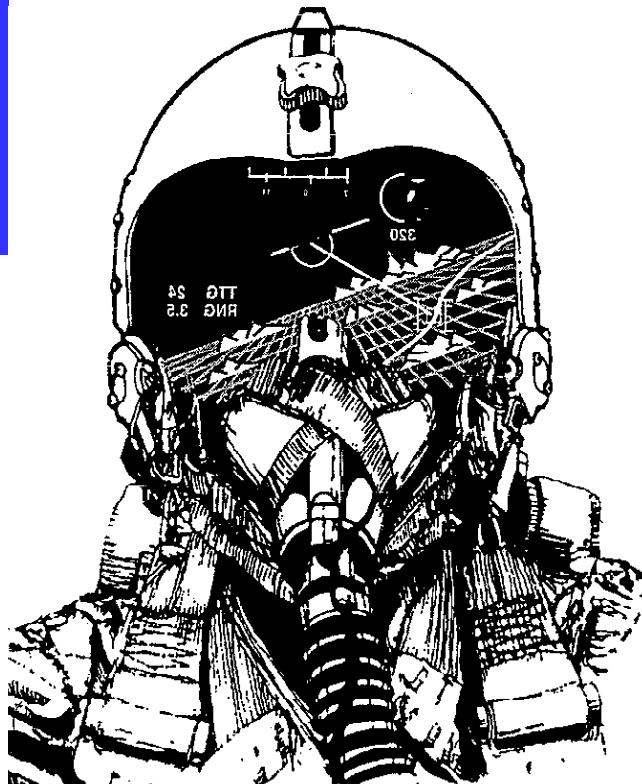

DISCUSSION

This page does not contain any export controlled technical data.

BACK UP SLIDES

AUTONOMY ... What does it mean?

Ability of the aircraft to fly and conduct mission operations safely and reliably ... without human intervention


The machine is capable of executing the entire decision cycle for all autonomous functions

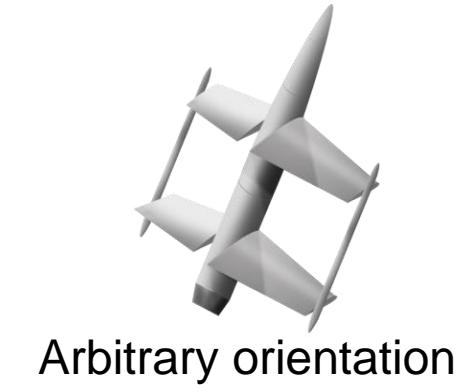
A CASE FOR UNMANNED

... Eliminating Crew Risk

The Contribution

- **Critical Decisions**
 - Life or Death
 - Safety
 - Mission Planning
 - Tactics
- **Data Interpretation**
- **Information Synthesis**
- **Direct Sensing (WVR)**
- **Manual Control**

The Penalty


- **Environmental Adaptation**
 - Oxygen
 - Pressurization
- **Human Interfaces**
 - Displays
 - Switches
 - Comfort
- **Safety/Level of Risk**
- **Susceptibilities**
 - Disorientation (e.g., Vertigo)
 - Motion Sickness
- **Limitations**
 - Acceleration (g's)
 - Gravitational Orientation
 - Endurance
- **Heat of Battle Effectiveness**
 - Workload
 - Stress
- **Training and Proficiency**
- **Additional Infrastructure**
 - Aircrew Support Systems
 - Search and Rescue

EXPANDED VEHICLE DESIGN SPACE

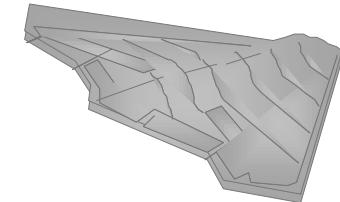
... Exploiting 'Unmanned'

Long endurance operation
...Very high altitudes



Expanded Operational
Envelope

Extreme agility


Small, mini & μ - air vehicle

Novel launch & recovery

Unique configurations

'Attritable' platforms

THE CHALLENGES AHEAD

The Information Revolution and Its Impact

- Major Drivers
 - Computing power – throughput speed and memory capacity
 - Miniaturization, including reduced power components
 - Digital communications ... networked systems
 - Sensors ... for payloads and platforms
 - GPS ... for timing and navigation
 - Imaging systems & technologies
- New & Emergent Capabilities for Aerospace
 - Integrated Air & Space capabilities
 - Unmanned & Robotic systems
 - Machine Intelligence and Autonomy
 - Enhanced & New Capabilities...Missions

AUTONOMY ... CHALLENGES FOR sUAS

Sensors –

Number, size, resolution, reach

Databases –

Onboard data storage capacity

Real time upgrades ...

(off-board sources)

Information Fusion

Perception – ...beyond detection

Real Time Computing

Throughput limitations

Observe

Orient

Act

Decide

Multi-effector Coordination
Decision Assessment/Adjudication

“Machine Learning”

Mission-level lessons

High Level Reasoning

Mission-to-platform logic
transition & integration

Conflict Resolution

Unforeseen Contingencies

Decision logic