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Presenter
Presentation Notes
Direct Energy Deposition aka Laser Engineered Net Shaping, Direct Metal/Material Deposition, Laser Cladding
Directed Energy Deposition (DED) covers a range of terminology: ‘Laser engineered net shaping, directed light fabrication, direct metal deposition, 3D laser cladding’ It is a more complex printing process commonly used to repair or add additional material to existing components (Gibson et al., 2010).
A typical DED machine consists of a nozzle mounted on a multi axis arm, which deposits melted material onto the specified surface, where it solidifies. The process is similar in principle to material extrusion, but the nozzle can move in multiple directions and is not fixed to a specific axis. The material, which can be deposited from any angle due to 4 and 5 axis machines, is melted upon deposition with a laser or electron beam. The process can be used with polymers, ceramics but is typically used with metals, in the form of either powder or wire.
Typical applications include repairing and maintaining structural parts.
Direct Energy Deposition  – Step by Step
A4 or 5 axis arm with nozzle moves around a fixed object.
Material is deposited from the nozzle onto existing surfaces of the object.
Material is either provided in wire or powder form.
Material is melted using a laser, electron beam or plasma arc upon deposition.
Further material is added layer by layer and solidifies, creating or repairing new material features on the existing object.
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DED Industrial Application
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Hybrid Additive and
Subtractive Machining

Prototypes and small
series production of
complex lightweight and
integral parts for:

1) Die & Mold

2) Aerospace

3) Automotive

4) Medical

Repair of Turbine
and Die & Mold
Components

-f

Repair of damaged
and worn components
for:

1) Medical
2) Die & Mold
3) Aerospace
(e.g. Blade Tip Repair)

Corrosion and
Wear Resistant
Coatings

Partial coatings and
complete part coatings
(corrosion and wear
resistant):

1) Mould Making

2) Off Shore Drilling
3) Machine Tool

4) Medical

Used with permission from DMG Mori
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N

DEPOSITION +__ MILLING - The flexibility of the additive

manufacturing via laser
powder nozzle is combined
with the precision of the
cutting technology

» The workpiece can be built-up in
» several steps. Intermediate
milling operations are possible.

e Machining of large, complete
workpieces

-  Repair of turbine components,
& repairin die & mold, technical
and wear resistant coatings

Used with permission from DMG Mori
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Presentation Notes
Laser deposition welding with powder nozzle: 20-times faster than powder-bed-process
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e Far Field Electrospinning —
achieve fast deposition of
nanofibers

Electrospinning
Northwestern Engineering

Pump
+200-~ i
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£ Taylor 85
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charged jet

e Near Field Electrospinning
takes a random deposition
process and converts it into a
controlled additive
manufacturing process.

Sun, Daoheng, et al. "Near-field
electrospinning.” Nano letters 6.4 (2006): 839-842.
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Presentation Notes
Most operated at open-loop
Voltage: near field 100V – 1kV; far field 10kV – 60 kV;
Materials: more than 100 types of far field, both ceramic and metal particles, copper wires  (replace ITO – indium, tin, oxide, - transparent transistor)
Polymers: Polyethylene oxide (PEO), polyacrylonitrile (PAN, for carbon nanofiber)
Distance from ~10 cm to ~75 cm for far field
Distance < 3cm for near field 
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2x speed
2s walit at corner

Nicolas Camilo Martinez Prieto, Jian Cao, Jiaxing huang, Kornel Ehmann, Northwestern AMPL 2015
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The fiber dragging one shows a single fiber being deposited in a square wave pattern.
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E Protecting nancfibers

24 hours

3D cell scaffolds for cell growth and drug
testing. (Electrospinning Company)

Ciutor Layar

Battery Separators (Elmarco) AVflo™ Vascular Access Grafts with
multilayer structure (Nicast)
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Presentation Notes
3D Scaffolds allow for improved cell growth when compared to 2D scaffolds. The scaffolds can be used for cell growth and differentiation, tissue growth and regeneration, and drug testing.
Battery separators prevent the cathode and anode from being in contact and allow rapid transport of ionic charge carriers.
Electrospun air filters offer mechanical filtration and electrostatic filtration due to residual charges.
Nanofibrous grafts are used for dialysis offer rapid sealing properties when punctured by needles due to compliance of the fiber mat. They are easily sutured to blood vessels.
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 Overview of DED and Electrospinning
 Process Parameters and Their Influences
 Sensing and Characterization Methods

e Process Control

e Research Needs
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Presentation Notes
Direct Energy Deposition aka Laser Engineered Net Shaping, Direct Metal/Material Deposition, Laser Cladding
Directed Energy Deposition (DED) covers a range of terminology: ‘Laser engineered net shaping, directed light fabrication, direct metal deposition, 3D laser cladding’ It is a more complex printing process commonly used to repair or add additional material to existing components (Gibson et al., 2010).
A typical DED machine consists of a nozzle mounted on a multi axis arm, which deposits melted material onto the specified surface, where it solidifies. The process is similar in principle to material extrusion, but the nozzle can move in multiple directions and is not fixed to a specific axis. The material, which can be deposited from any angle due to 4 and 5 axis machines, is melted upon deposition with a laser or electron beam. The process can be used with polymers, ceramics but is typically used with metals, in the form of either powder or wire.
Typical applications include repairing and maintaining structural parts.
Direct Energy Deposition  – Step by Step
A4 or 5 axis arm with nozzle moves around a fixed object.
Material is deposited from the nozzle onto existing surfaces of the object.
Material is either provided in wire or powder form.
Material is melted using a laser, electron beam or plasma arc upon deposition.
Further material is added layer by layer and solidifies, creating or repairing new material features on the existing object.
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Powder Deposition Parameters
 Powder Flow Rate

Shield Gas Flow Rate

Powder Shape/Size/Type
Nozzle Type

Laser Parameters

Laser Spot Size

 Laser Scanning Speed
Laser Power

Laser Type

* Hatch Spacing
Layer Height

Deposited
material
Build Geometry

]
i
i

i

i

i

\

i

i

1

1

i

i

i

1

Geometric Parameters H
i

i

i

i

i

L

Build Strategy
e Substrate Parameters

Substrate Surface Condition
Substrate Temperature
Substrate Size

Workpiece

Dilution area Melt pool
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Presentation Notes
One of the largest challenges of monitoring and controlling the DMD process is the sheer number of variables at play.
Diode lasers, fiber laser, disc laser, YAG laser…CO2 lasers are not common due to too much back reflection…Pulse lasers are also not common

Nozzle – four nozzles and side access nozzle, 
Laser type – most commonly used laser CO2 laser, 
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Effect of Powder Mass Flow Rate on Microstructurem

0.8 g/min o - 1.58 |n .gmi

20 g/min 50 g/min

[1] Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate, Imran et al., Proceedings of the World Congress on Engineering Vol lll, 2010
[2] Used with permission from DMG Mori
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Too little powder causes overheating
Too much powder causes incomplete melting
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\.

Sufficient
Shield Gas Flow

Effect of Shield Gas Flow
on 8620 Steel Build Quality

Insufficient
Shield Gas Flow

Used with permission from DMG Mori
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Presentation Notes
AISI 8620 is a hardenable chromium, molybdenum, nickel low alloy steel often used for carburizing to develop a case-hardened part. This case-hardening will result in good wear characteristics.�http://www.suppliersonline.com/propertypages/8620.asp
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2mm 2mm

1992 W 2839 W 4214 W
Laser power P, (scanning speed v=1500 mm/min, powder mass flow m=1.91 kg/h)

4

[1]

[2]

4 kW 3 kW 2 kW

[1] Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for
high deposition rate laser metal deposition, Zhong et al., Journal of Laser Applications, 2015

[2] Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate, Imran, Proceedings
of the World Congress on Engineering, 2010
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the influence of parameters – Franhofer 
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the influence of parameters – Franhofer 
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—> Effect of Scan Speed and Laser Power on
Y Ti-6Al-4V Build Microstructure
Thin substrate Thick substrate
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The effect of laser power and traverse speed on microstructure, porosity and build height in laser-deposited Ti-6Al-4V, Kobryn,
Scripta Materialia, 2000
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The faster your scan speed. The smaller your grain size. 
Air Force Research Laboratory
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Quantitative characterization of porosity in stainless steel LENS powders and deposits, Susan, Materials Characterization Vol 57,
2006
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Sandia National Laboratories, 
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Effect of Deposition Direction on Microstructure
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The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718, Liu, Journal of Alloys and Compounds, 2011
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Approaches
* Imaging
e |nfrared (|R) and Laser Camera Analyzing
o photodiode device
visible-wavelength
cameras

Dhsewat_ian zone:
 Emission detection o o
« Variations of optical
pyrometry or

spectroscopy

Meltpool

C. Dunsky, Process monitoring in laser additive manufacturing, Industrial Laser Solutions for Manufacturing, September 12, 2014.
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Pyrometer – looked at the radiation, spectrum of those wavelengths (two-color just two wavelength), read the numbers, planck’s law to predict the temparature, 


e Powder Delivery Rate Sensing
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Methods

» Electronic scale: change of weight of metal powders in the
hopper

* Optoelectronic sensor: laser energy decreased with increasing
powder delivery rate

(a) (b)

48
—Carrier gas + powder E 475 .
.-'—1-%_ -] 4.7 '\\
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.-. : * Laser beam g 4.6
e ., ; o. / a—en g 4,55
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Fig. 1. Powder delivery rate sensor. (a) Schematic of the powder Powder delivery rate (g/min)

delivery rate sensor. (b) Setup of the powder delivery rate sensor.
Fig. 2. Output performance of the powder delivery rate sensor.

Hu, D., & Kovacevic, R. (2003). Sensing, modeling and control for laser-based additive manufacturing. International Journal of
Machine Tools and Manufacture, 43(1), 51-60.
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The sensor consists of a laser diode, a photo diode, and a glass window. The components are installed in such a way that the laser beam emitted from the laser diode passes through the powder stream flowing inside the glass chamber and is received by the photo diode (Fig. 1 (a)). The carrier gas and the metal powder are mixed well so the powder particles distribute uniformly in the carrier gas. Because of the diffusion, absorption, and reflection of the powder particles to the laser beam, the laser energy received by the photo diode decreases if the powder delivery rate increases, which means there is higher percentage of powder particles in the carrier gas. The laser diode emits a red light with a wavelength of 600–710 nm and a power less than 500 mW. The photo diode is characterized with a good linearity between the illumination energy received by the diode and the output current that is converted later to a voltage signal through a current signal pick-up circuit.

Scale – slow reaction, 1hz, +/- 1g/min (10-15 g/min, 80 g/min – DMG) 
Optoelectronic sensor – 
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Generation laser: Nd-Yag laser, high-energy pulse laser, 10 pulse per second, signals are collected for an average of 1000 pulses, 0.1 J/per pulse to keep material in the thermal-elastic region (stainless steel),  
Detection laser: 532 nm green laser, continuous laser, 200mw
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Bulk Ultrasonic Wave Speed Variation with Porosity

in LENS® Manufactured CoCr Sample
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J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit, “Porosity Measurements and Analysis for Metal Additive Manufacturing
Process Control,” Jornal of Research of the NIST 119, pp. 494-528, (2014).
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NIST
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In-situ X-ray diffraction (XRD) on rapidly heated
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INn-situ Crystallographic Phases
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Alpha to beta phase transformations and melting clearly observable; high temporal resolution can be reached using synchotron radiation and information can be used for monitoring, development of phase selection and simulations to map out consiuents and solidification of different phases

Swiss Federal Laboratories 
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Stress Measurement
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Thin-walled component built
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KOWARI strain scanner
using neutron diffraction

Hoye, N., et al. (2014). Measurement of residual stresses in titanium, aerospace components formed via additive

manufacturing. Material Science Forum.
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Though most of the studies demonstrate ex-situ stress measurements, the most recent studies are attempting to implement in-situ stress measurement. 

This study investigated gas tungsten arc welding (GTAW) additive manufactured Ti-6Al-4V components and used neutron diffraction techniques on the KOWARI strain scanner to measure residual strains and stresses. 

Neutron diffraction – commonly used for the residual stress, scanning speed – 1m/sec, penetration depth (35mm) x-ray (2-3mm)

Australian
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Novel submicron X-ray microscopy
for sub-surface imaging and I ' a
reveals 3D microstruture -

i

Lavery, L. (2015). Recent advancements in 3D X-ray microscopes for additive manufacturing. Microscopy Society
of America.
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Zeiss

Top: Sub-micron XRM (ZEISS Xradia Versa) optical architecture. Magnification is achieved through a combination of geometric (sample, source, detector placement) and optical (post-sample, variable scintillator-lens-ccd coupling) methods. 

Bottom: From the 3D reconstructed dataset (inset), a virtual 2D cross-section (left) reveals several regions of non-sintered powder steel volume. In addition to the non-sintered volume, several micronsize cracks were discovered. Sample courtesy of NIST

1mm cubic
The dark area is the un-sintered zone
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Variable Powder Flow Rate Control in Laser Metal Deposition Processes, Tand, J. Manuf. Sci. Eng 130(4), 2008
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Processes typically utilize a constant powder flow rate which results in inconsistent track morphology when disturbances, such as acceleration, of the motion system occur. Maintaining uniform powder deposition per unit length is critical to achieving mechanical properties equivalent or superior to parts created by conventional processes. 
This specific control methodology utilizes information gathered from a “dry run” of the build tool path to extrapolate the proper powder flow rate at any given time during the actual build.
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Layer Height Control
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Control of melt pool temperature and deposition height during direct metal deposition process, Song, et al., The International Journal

of Advanced Manufacturing Technology, 2012
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University of Michigan 
A two-input single-output hybrid control system including a master height controller and a slave temperature controller is used to control both height growth and melt pool temperature at each deposition layer. When the melt pool height is above a prescribed layer thickness, the master height controller blocks control actions from the temperature controller and decreases laser power to avoid over-building. When the melt pool height is below the prescribed layer thickness, the temperature controller bypasses the height controller and dynamically adjusts laser power to control the melt pool temperature. This hybrid controller is able to achieve stable layer growth by avoiding both over-building and under-building through heat input control.


o McCormick Dwell Time Control
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Without Control With Control

Deposit experiences increased heating Deposit experiences stable heating at
during build reduced levels

Stratonics Therma Viz
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This specific control will not signal the start for the deposition of the next layer until the total part heat is below a set value. 
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e Unique in-situ monitoring S Whipping
. . . . i
requirements due to printing via
continuous nano and micro fiber 2l Collector

deposition.

e System typically operates using
open loop control.

e Metrology and characterization

done after deposition via SEM. =

Taylor cone

e

Polymer Jet

(A) Deposition of single fiber, scale bar: 100 um (B) structure

Sun, Daoheng, et al. "Near-field electrospinning.” Nano letters 6.4 (2006): 839- deposition, scale bar: 100 um (C) Microscopic image of deposition
842. process , scale bar: 25 um
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Most operated at open-loop
Voltage: near field 100V – 1kV; far field 10kV – 60 kV;
Materials: more than 100 types of far field, both ceramic and metal particles, copper wires  (replace ITO – indium, tin, oxide, - transparent transistor)
Polymers: Polyethylene oxide (PEO), polyacrylonitrile (PAN, for carbon nanofiber)
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* Process parameters: electric field strength, flow rate, deposition speed, and
evaporation rate.

e On line diagnostic requires high magnification and high temporal resolution of
deposition process over large areas.

e Fiber diameters range from ~ 5 nm to tens of microns.
e Collector speeds up to 100s of millimeters per second
e Areas of tens of centimeters.

e Monitoring of fiber in flight: diameter, speed, orientation
b o f€ L |

s 0.149 5
l . i
‘ (.336 5 0641 s

Kim, Ho-Young, et al. "Nanopottery: coiling of electrospun polymer nanofibers."Nano letters 10.6 (2010): 2138-2140.
Huang, Zheng-Ming, et al. "A review on polymer nanofibers by electrospinning and their applications in
nanocomposites." Composites science and technology63.15 (2003): 2223-2253.
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Hundreds mm/sec – collection speed
Diameter, speed, evaporation rate
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e Current in-situ sensing limited to environmental control (humidity, temperature),
electrical current, and limited optical feedback.
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Real-time optical monitoring of Taylor cone to assure
continuous deposition and estimate fiber diameter.

Relation between electric current and fiber morphology

Liu, Da Li, et al. "Algorithm research of pattern recognition for process control of electrospinning.” Advanced Materials Research. Vol. 314, 2011.
Samatham, Ravikant, and Kwang J. Kim. "Electric current as a control variable in the electrospinning process."” Polymer engineering and science 46.7

(2006): 954.
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* Production of copper nanofiber webs via two-step pyrolysis of PVA and
copper acetate webs deposited by electrospinning.

* High fiber density leads to resistance reduction
» High transparency and conductivity.
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Wu, Hui, Liangbing Hu, Michael W. Rowell, Desheng Kong, Judy J. Cha, James R. McDonough, Jia Zhu, Yuan Yang, Michael D.
McGehee, and Yi Cui. "Electrospun metal nanofiber webs as high-performance transparent electrode.” Nano letters 10, no. 10

(2010): 4242-4248.
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Motivation: Need for transparent electrodes with low resistance. ITO (Indium tin oxide) is normally used but expensive.
Fig a: Production process. Step 1: electrospinning of copper acetate and PVA ( Poly(vinyl acetate) ). Step 2: Heating in air at 500 C for 2 hours to remove polymer and obtain CuO (cupric oxide) nanofibers. Step 3: Anneal in hydrogen atmosphere at 300 C for 1 hour to obtain copper nanofibers.
Fig b:  72% of junctions are fused by the process. Fig c,d: specular transmittance at different wavelengths for Cu nanofibers of different sheet resistances. Fig e:  fiber measurements. Fig f: Change in resistance due to bending. Fig g: Change in resistance due to tension. 
In all cases the copper mats are embedded in PDMS for testing.
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Substrate MNFES nanofiber
‘A' : 0& 90um; 4D1V 150um; 4DIV
Manochannel @ '
A\\ @ A\\"/x
Remaoval of sacrificial fiber Coating of Au layer

90um; 10DIV 150pum; 10DIV
Printing of nano and microchannels

Cell Scaffolds with excellent spacing control printed via near
field melt electrospinning

Deposition of nanofibers on patterned silicon collector

Wang, Xiang, et al. "Fabrication of nanochannels via near-field electrospinning."Applied Physics A 108.4 (2012): 825-828.
Zheng, Gaofeng, et al. "Precision deposition of a nanofibre by near-field electrospinning.” Journal Of Physics. D. Applied
Physics 43.41 (2010): 415501.

Hochleitner, Gernot, et al. "Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning
writing." Biofabrication 7.3 (2015): 035002.


Presenter
Presentation Notes
“Since nanofibres by NFES can be deposited on a patterned substrate with very good precision, it provides a unique way for the precision deposition and integration of nanofibres with micro/nanosystems, in the fields of MEMS, micro-sensors, power devices, etc.”

In the cell scaffold pictures each image is labeled with the scaffold spacing and the time of cell cultivation. (DIV stands for days in vitro). The cell type is primary human mesenchymal stromal
cells (hMSCs) from trabecular bone that were isolated from the femoral head of patients undergoing total hip arthroplasty.
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Martinez-Prieto, N., Abecassis, M., Xu, J., Guo, P., Cao, J., & Ehmann, K. F. (2015). Feasibility of Fiber-Deposition Control by
Secondary Electric Fields in Near-Field Electrospinning. Journal of Micro and Nano-Manufacturing, 3(4), 041005.
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Presentation Notes
Basic Idea: Use a secondary electric field, perpendicular to the fiber flight direction, to modify fiber flight path.
High molecular weight polyethylene oxide (PEO, MW=4,000,000) solution in DI water is prepared at 2 wt% and loaded into a 1.5 ml glass syringe. The needle is of gauge 30, with an inner diameter of 0.15 mm. The applied voltage, between the needle and the ground, was ~900 V. The needle-to-collector distance was set to 2 mm.
Droplet ~600 micron diameter
typical stage scanning speed used was 2 mm/s. 
Electrode is 30 gage copper wire, with a 250 μm diameter, connected to a 5 volt power supply. The electrode was wired to a switch so that the voltage could be pulsed.
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Martinez-Prieto, N., Abecassis, M., Xu, J., Guo, P., Cao, J., & Ehmann, K. F. (2015). Feasibility of Fiber-Deposition Control by
Secondary Electric Fields in Near-Field Electrospinning. Journal of Micro and Nano-Manufacturing, 3(4), 041005.
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Nie, H.L. et al., JACS, 2015 137,10683
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* Given that AM enables the realization of both
design geometry and multi-material characteristics,
how do we develop digitally compatible
computational design tools that address and
Integrate multi-material and geometric information

Into the design of manufacturing process considering
uncertainties?
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Identify key unknown parameters in the material model
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To reduce the computational cost, the spatial random process models will be constructed as surrogates for the expensive simulation models 
An adaptive sampling method will be developed to reduce the uncertainty of surrogate models due to lack of data
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* Given that AM enables the realization of both

44

design geometry and multi-material characteristics,

how do we develop digitally compatible
computational design tools that address and

iIntegrate multi-material and geometric information
Into the design of manufacturing process considering

uncertainties?

* Many of the limitations of AM can be effective
addressed with predictive simulation paired wit
equipment innovation, effective process contro

N

y

and a

strong understanding of the processes, materials,

and properties involved.



= MCCormick

Northwestern Engineering

TYPE OF MANUFACTURING

DISTRIBUTED CONCENTRATED DISTRIBUTED +

CONCENTRATED
1800 AD 2000 AD 2100 AD
Self-reliance Reliance on others

CURRENT FORCES NOW AT WORK

» Globalization

* Cyber Infrastructure » Rapid Flexible Manufacturing
» Technological Advances

* Mass Customization / Personalization

 Emergence of Point-of-use Technologies
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Incentives to drive change
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Melt pool sensor:  (can be 5000 frames 100x100 pixel per second)
 752 x 480 pixels, pixel spacing 6.45 microns
 Exposure: 0.1 – 130 milliseconds
 Frame rate: 25 frames/second @ 12 bit output
 Resolution range: 10 μm/pixel – 1 mm/pixel
 Field of view range: 5 mm – 500 mm
 Temperature Range: : 1000 to 2500 C

Global heat sensor: 
 Frame rate: 30 Hz
 Temperature range: 500°C to 2500°C
 FOV 63.5 mm x 44.5 mm
 5 pixels/mm
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