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Questions to be answered: 

1.  - 
2.  How to leverage HPC spanning scientific discovery to ensembles 

of engineering solutions? 
3.  - 
4.  - 
5.  What analytical, experimental, and software tools are needed? 
6.  - 
7.  What opportunities exist for HPC, in order to provide fundamental 

scientific discovery of the process-properties-performance 
relationship relevant to AM? 

8.  What are those drivers and fundamental advancements are 
needed for computational methods and optimization techniques? 
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A. Brown, D. Baumann, 2012, ``Validation of a model for static and dynamic recrystallization in metals,” 
Int. J. of plasticity,  32-33, pp. 17-35. 

Stress field 

1.  Temperature history at each material point. 
2.  As-manufactured state using an advanced viscoplastic material model with 

internal state variables capable of representing processing history (e.g. 
recrystallization) 

•  Residual-stress field 

•  Initial yield-stress (field), hardening parameters, failure parameters, etc. 

3.  Predict part performance with error estimation and UQ in quantities of interest 

Macroscopic vision  
(process-property-performance) 
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1.  Is the concept of a ``material property’’ appropriate 
for AM parts?   

2. The residual-stress field must be quantified with its 
uncertainty. 

3. Data science as an enabler for predictive modeling. 

4. Fast simulations for industrial use. 

AM challenges and opportunities for 
computational solid mechanics 
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Is the concept of a ``material property’’ 
appropriate for AM parts?   



9	
  

•  Material property and macrostructure are no longer separable. 
•  Process/material/part must be qualified concurrently. 
•  What is the accuracy of homogenization theory for AM materials?  

•  scale separation 
•  texture/anisotropy 
•  surface effects 

•  Need to apply concepts from a posteriori error-estimation to 
quantify errors inherent in homogenization and material-model 
form error. 

Is the concept of a ``material property’’ an 
accurate approximation for AM materials?   
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fine-scale fluctuations replaced with mean behavior 
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Homogenization 
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Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies." 
Journal of the Mechanics and Physics of Solids, 38(6): 813-841. 

Apparent vs. effective material properties 
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Convergence to effective 
isotropic elastic properties 
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LENS® deposition Powder feed 

Focused laser beam 
hatch width 

layer thickness 

scan direction (x) 
(T. Palmer, PSU) 

LENS®, Laser Engineered Net Shaping 
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Wrought stainless steel 304L bar LENS build, 304L 3.8kW 

32 mm



Large area views of microstructure of  
AM SS-304L (2.0 kW) 6 mm X 10 mm 

Laser 
direction 

•  Electron backscatter diffraction 
(EBSD) maps of electropolished 
surface. 

•  Built using a cross-hatch pattern. 

•  Density has been confirmed at 
99.8 (Archimedes method). 

(J. Michael, SNL) 

How to homogenize to get a 
``material properties”? 
•  Assume periodicity? 
•  Assume statistically 

homogeneous? 
•  anisotropic 

(D. Adams, SNL) 
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Stress-strain response  
(J. Carroll, SNL) 
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•  Model the grain structure directly within the engineering-scale FEA model. 
•  Uses crystal-plasticity material models for each grain. 

•  Can incorporate as-manufactured state (e.g. texture, residual stress)  
•  Requires massively parallel FEA framework. 

•  Useful for understanding errors in homogenization and “data-science” studies. 

Equiaxed grain 
structure 

Do we resort to Direct Numerical 
Simulation (multiscale modeling)? 

19	
  



Example: I-beam in torsion 

• ~420,000 grains 
• Web thickness to grain ratio = 8 
•  uniformly random crystal orientations (no texture) 
•  35M finite elements 
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strain-rate dependence 
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Not considering: 

•  grain boundary effects (Hall-Petch effect) 
•  twinning 
•  dislocation substructures 
•  latent hardening 
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C11 = 204.6 GPa

C12 = 137.7 GPa

C44 = 126.2 GPa

Single crystal elastic constants (austenite) 

FCC crystal plasticity model 



VonMises stress field 

Homogenization solution 

Multi-scale modeling 
(direct numerical simulation, DNS) 



Stress extraction lines/curves 
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realization 1 

realization 2 

Stress magnitude around hole 
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homogenized
DNS, realization 1
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Homogenization solution vs. DNS 

Homogenization solution 
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What about modeling the LENS 
microstructure? 



Idealized LENS microstructures 
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+ 

equiaxed	
   addi.ve,	
  LENS	
  

bead size = 1 mm
grain size = 40 microns

grain size = 40 microns
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Idealized	
  microstructures	
  

equiaxed	
   LENS	
  



30	
  

Macroscopic	
  stress	
  field	
  
homogeneous,	
  isotropic	
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(V. Tikare, J. Madison, SNL) 

What about AM microstructures? 

•  Kinetic Monte Carlo (KMC) 
•  Laser-welding simulation 

(http://spparks.sandia.gov) 
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For additive manufacturing applications, two of the most 
important properties for KMC: 
1.  melt pool velocity       
2.  shape of the hot-zone trailing the melt pool’s path 

1.0 mm

X-Plane (X-direction)
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Comparison with LENS 3.8 kW EBSD results 

YZ plane 
XY plane XZ plane 

(http://spparks.sandia.gov) 

Microstructure generation 
(T. Rodgers, J. Madison, V. Tikare, SNL) 
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X only X and Y, alternating layers 

(T. Rodgers, J. Madison, V. Tikare, SNL) 

Comparison of AM scan patterns 
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Data science as an enabler for 
predictive modeling 
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•  High through-put material testing 

•  UQ, statistical learning 
•  pattern recognition for material-failure precursors 

•  3D digital volume correlation (DVC) using micro-CT 

•  Internal speckle pattern? 

•  Statistical learning, pattern recognition, emergent behavior 

Data science as an enabler for 
predictive modeling 



Stainless-steel tube under axial loading 

Geometry 

•  thickness/grain ratio = 8 
•  352,000 equi-axed grains 
•  uniformly random crystal orientations 

(no texture) 

Part with embedded 
microstructure 
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Pattern recognition? 
Axial load, plastic regime, 2% strain 
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DNS, realization 1
homogenized
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DNS, realization 2
homogenized
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•  Internal speckle pattern for metal AM? 

•  Invoke statistical learning, pattern recognition for discovery 
in material failure modeling. 

3D, Digital Volume Correlation (DVC) 

Pan, etal, Meas. Sci. Technol. 23 (2012) 045002 

Synthetic data 
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Fast simulations for industrial use. 
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Fast simulations for industrial use. 

•  Need to develop specialized computational tools that are extremely 
efficient, instead of relying on general purpose computational tools. 

•  Opportunity to break out of current CAD-analysis paradigm. 
•  Focus on implicit representations of geometry. 
•  Focus on implicit representations of approximation spaces so that 

meshing process is eliminated. 
•  Fictitious-domain methods, finite-cell methods, FFT methods 

•  Mesh-free methods 

•  A posteriori error estimation in engineering quantities-of-interest 
•  Heuristics in FEA are still state-of-the-art. 



1.  Embed	
  complex	
  structure	
  in	
  a	
  box	
  that	
  is	
  simple	
  to	
  mesh.	
  
2.  Discre.ze	
  displacement	
  field	
  using	
  a	
  Fourier	
  basis	
  (voxela.on	
  of	
  

domain).	
  
3.  Use	
  fixed-­‐point	
  itera.on	
  to	
  solve	
  governing	
  PDEs	
  using	
  3D	
  FFT.	
  

Instead of meshing the complex geometry 
explicitly, use an “embedded domain” paradigm  

FFT method 

Bishop, 2004, ``Rapid stress analysis of geometrically 
complex domains using implicit meshing”, 
Computational Mechanics, 30, 46-478. 



42	
  

finite-element 
analysis 

digital analysis 
with FFT 

64⇥ 128 1024⇥ 2048

Example:  FFT method 
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•  Consistent with implicit 
representation of part geometry 

•  Fast analysis (no explicit 
meshing) 

D. Schillinger & M. Ruess, Archive of Computational Methods in Engineering, 2014,  
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Goals to advance predictive 
methods in AM 
Short term 
•  Continue development of advanced viscoplastic macroscopic 

material models with internal-state variables capable of 
representing changes to microstructure due to complex processing 
history. 

•  Process modeling (T, stress) for full-field residual-stress state 
determination 

•  Measurement and inversion techniques for full-field residual-stress 
state determination 
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Goals to advance predictive 
methods in AM 
Long term 
•  Error estimation in engineering quantities of interest for quantifying 

material model form error, discretization error, and homogenization error. 

•  Process models for microstructure predictions, e.g. KMC, phase field. 

•  Multiscale material models that represent microstructure explicitly, e.g. 
through concurrent homogenization with crystal-plasticity models. 

•  Development of crystal-plasticity models; advanced calibration methods. 

•  Data science enabled by high-throughput testing and digital-volume 
correlation. 

•  Development of implicit geometry representations and computational 
techniques. 

•  Fast simulations tools for industrial use. 


