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Questions to be answered:

1.
2.
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How to leverage HPC spanning scientific discovery to ensembles
of engineering solutions?

What analytical, experimental, and software tools are needed?

What opportunities exist for HPC, in order to provide fundamental
scientific discovery of the process-properties-performance
relationship relevant to AM?

What are those drivers and fundamental advancements are
needed for computational methods and optimization techniques?
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I\/Iacroscopic vision ) e,

(process-property-performance)

Stress field

1. Temperature history at each material point.

2. As-manufactured state using an advanced viscoplastic material model with

internal state variables capable of representing processing history (e.g.
recrystallization)

* Residual-stress field
* Initial yield-stress (field), hardening parameters, failure parameters, etc.

3. Predict part performance with error estimation and UQ in quantities of interest

A. Brown, D. Baumann, 2012, “Validation of a model for static and dynamic recrystallization in metals,”
Int. J. of plasticity, 32-33, pp. 17-35. 6




AM challenges and opportunities for
computational solid mechanics

1. Is the concept of a "material property” appropriate
for AM parts?

2. The residual-stress field must be quantitied with its
uncertainty.

3. Data science as an enabler for predictive modeling.

4. Fast simulations for industrial use.




s the concept of a “material property”
appropriate for AM parts?
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s the concept of a "material property” an
accurate approximation for AM materials?

Material property and macrostructure are no longer separable.

Process/material/part must be qualified concurrently.

What is the accuracy of homogenization theory for AM materials?

* scale separation
* texture/anisotropy
* surface effects

Need to apply concepts from a posteriori error-estimation to
quantify errors inherent in homogenization and material-model
form error.
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Homogenization

fine-scale fluctuations replaced with mean behavior




Apparent vs. effective material properties (i) i
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Huet, C. (1990). "Application of variational concepts to size effects in elastic heterogeneous bodies.”
Journal of the Mechanics and Physics of Solids, 38(6): 813-841.
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From SVEs to RVEs ),

~ 83 grains

.. S100

... 5100

~ 323 grains



Convergence to effective

isotropic elastic properties

* mean of 100 simulations at each “grain level”
* rational function extrapolation to oo
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number of grains | apparent Young’s Modulus | apparent Poisson’s ratio
(GPa)
~43 grains 185.2 0.307
~83 grains 190.5 0.301
~163 grains 193.9 0.298
~323 grains 195.7 0.296
co 197.6 0.294

These values will be used as the homogenized, isotropic, elastic properties.




Sandia

LENS®, Laser Engineered Net Shapin@l"a%s
Powder feed (- LENS® deposition

Focused laser beam

hatch width

layer thickness

(T. Palmer, PSU)
scan direction (x)
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Wrought stainless steel 304L bar LENS build, 304L 3.8kW
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Large area views of microstructure of )
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AM SS-304L (2.0 kW)

(D. Adams, SNL)

e Electron backscatter diffraction
(EBSD) maps of electropolished
surface.

* Built using a cross-hatch pattern.

 Density has been confirmed at
99.8 (Archimedes method).

How to homogenize to get a
“material properties”?
* Assume periodicity?

« Assume statistically
homogeneous?

* anisotropic




Microstructure com parison ) g,
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Stress-strain response
(J. Carroll, SNL)
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Do we resort to Direct Numerical ) e
Simulation (multiscale modeling)?

Equiaxed grain
structure

» Model the grain structure directly within the engineering-scale FEA model.
* Uses crystal-plasticity material models for each grain.

» Can incorporate as-manufactured state (e.g. texture, residual stress)

* Requires massively parallel FEA framework.

» Useful for understanding errors in homogenization and “data-science” studies. 19




Example: I-beam in torsion ) .

« ~420,000 grains

» Web thickness to grain ratio = 8

* uniformly random crystal orientations (no texture)
* 35M finite elements

20




FCC crystal plasticity model ) i,

(K. Matous, A. Maniatty, 2004, [JNME)

Representative Volume Element (RVE) response

plastic response

. . N
plastic velocity p_ .o pa
gradient: LF = 2_37 P

Schmid tensor: P% = m® @ n®

1/m
slip system slip A% = A (T_> - sign(7%)
rates: 9
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* latent hardening 21




VonMises stress field

Homogenization solution

Multi-scale modeling
(direct numerical simulation, DNS)



Stress extraction lines/curves

[ [0/0C
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Homogenization solution vs. DNS i,

Stress magnitude around hole
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What about modeling the LENS
microstructure?

25




| dealized LENS microstructures®-
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bead size =1 mm
grain size = 40 microns

grain size = 40 microns 27




Stress-strain response

equiaxed, no texture
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ldealized microstructures

equiaxed LENS
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Macroscopic stress field ) ..

homogeneous, isotropic

equiaxed, no texture, isotropic
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What about AM microstructures? ®=.

(V. Tikare, J. Madison, SNL) (http://spparks.sandia.gov)

* Kinetic Monte Carlo (KMC)
e Laser-welding simulation




Microstructure generation ) .

(T. Rodgers, J. Madison, V. Tikare, SNL) (http://spparks.sandia.gov)

For additive manufacturing applications, two of the most
important properties for KMC:

1. melt pool velocity
2. shape of the hot-zone trailing the melt pool’s path

Comparison with LENS 3.8 kW EBSD results

XY plane

o




Comparison of AM scan patterns ®&:.

(T. Rodgers, J. Madison, V. Tikare, SNL)

X only

X andY, alternating layers




Data science as an enabler for
predictive modeling




Data science as an enabler for
predictive modeling

* High through-put material testing

« UQ, statistical learning
* pattern recognition for material-failure precursors

3D digital volume correlation (DVC) using micro-CT

* Internal speckle pattern?

« Statistical learning, pattern recognition, emergent behavior
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Stainless-steel tube under axial loading

Geometry

Part with embedded
microstructure

* thickness/grain ratio = 8

+ 352,000 equi-axed grains

* uniformly random crystal orientations
(no texture)

36




Pattern recognition?

Axial load, plastic regime, 2% strain

realization 1

realization 2

realization 3
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0
3D, Digital Volume Correlation (DVC)

Synthetic data

Number of voxels

0 50 100 150 200 250
Gray leval

Pan, etal, Meas. Sci. Technol. 23 (2012) 045002

* Internal speckle pattern for metal AM?

* Invoke statistical learning, pattern recognition for discovery
in material failure modeling.

38
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Fast simulations for industrial use.
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Fast simulations for industrial use.

Need to develop specialized computational tools that are extremely
efficient, instead of relying on general purpose computational tools.

Opportunity to break out of current CAD-analysis paradigm.

Focus on implicit representations of geometry.

Focus on implicit representations of approximation spaces so that
meshing process is eliminated.

* Fictitious-domain methods, finite-cell methods, FFT methods

e Mesh-free methods

A posteriori error estimation in engineering quantities-of-interest

e Heuristics in FEA are still state-of-the-art.




Instead of meshing the complex geometry ) i,
explicitly, use an “embedded domain” paradigm

Laboratories

Bishop, 2004, “Rapid stress analysis of geometrically
complex domains using implicit meshing”,
Computational Mechanics, 30, 46-478.

FFT method

1. Embed complex structure in a box that is simple to mesh.

2. Discretize displacement field using a Fourier basis (voxelation of
domain).

3. Use fixed-point iteration to solve governing PDEs using 3D FFT.



Example: FFT method

finite-element

1111 analysis

O
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64 x 128

1024 x 2048
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The Finite Cell Method: A Review in the Context of Higher-Order
Structural Analysis of CAD and Image-Based Geometric Models

D. Schillinger & M. Ruess, Archive of Computational Methods in Engineering, 2014,

 Consistent with implicit
representation of part geometry

* Fast analysis (no explicit
meshing)
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Goals to advance predictive
methods in AM

Short term

« Continue development of advanced viscoplastic macroscopic
material models with internal-state variables capable of
representing changes to microstructure due to complex processing
history.

* Process modeling (T, stress) for full-field residual-stress state
determination

* Measurement and inversion techniques for full-field residual-stress
state determination




Goals to advance predictive
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methods in AM

Long term

Error estimation in engineering quantities of interest for quantifying
material model form error, discretization error, and homogenization error.

Process models for microstructure predictions, e.g. KMC, phase field.

Multiscale material models that represent microstructure explicitly, e.g.
through concurrent homogenization with crystal-plasticity models.

Development of crystal-plasticity models; advanced calibration methods.

Data science enabled by high-throughput testing and digital-volume
correlation.

Development of implicit geometry representations and computational
techniques.

Fast simulations tools for industrial use.
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