Sustainability Research/Indicators via Integrated Assessment Modeling

John P. Weyant
Stanford University

Presentation at NAS Workshop on
“Transition toward Sustainability after 15 Years: Where Do We Stand in Advancing the Scientific Foundation”

January 14, 2016
Hyatt Regency Newport Beach
Newport Beach CA
Outline

• State of the Art in Integrated Assessment Modeling in 2000
 – Poor understanding of many systems
 – Almost no understanding of critical linkages
 – Huge lack of critical data almost everywhere
 – Numbers meaningful only at very local level, concepts only at macro scale

• State of the Art In Integrated Assessment Modeling in 2015
 – Some models now more integrated with land, water and food capabilities
 – Development of Shared Socio-Economic Pathways along side RCP scenarios
 – Some key interactions identified and analyzed, but integrated climate feedbacks rare
 – Emergence of regional integrated assessment

• New Horizons/Directions for Future Research
 – Addition of climate feedbacks for selected scenarios
 – Integrated impacts assessment with linkages and trade and transfers
 – Much more work on extremes in climate and impacts
 – More sophisticated treatment of uncertainty
What is Integrated Assessment of Climate Change?

• Many definitions of IA for many purposes (climate change is just one application area)
• Could include any analysis involving two or more major earth system components including at least one natural and one human component
• Can be done with or without models
• Most “formal” IAMs cover as much of the global earth system as possible
IPCC Second Assessment Report
Working Group 3 - Chapter 10
Integrated Assessment (1995)
Why Integrate?

• Understand complicated interactions and feedbacks among components
• Develop information and insights not available from individual disciplinary models
• Focus in on where and at what scale major interactions between components can occur
IPCC Third Assessment
Working Group 3 - Chapter 1
Sustainable Development and International Equity (2001)
Integrated Assessment Models (IAMs)

IAMs integrate human and natural Earth system climate science.

- IAMs capture interactions between complex and highly nonlinear systems. IAMs provide insights that would be otherwise unavailable from disciplinary research.
- IAMs provide physical science researchers with information about human systems such as GHG emissions, land use and land cover.

IAMs provide important, science-based decision support tools.

- IAMs support national, international, regional, and private-sector decisions.

From: Calvin, O’Neill and Sue Wing, DOE Climate-Energy Workshop October 24, 2014.
Some integrated assessment models (e.g., DICE, PAGE, FUND) have focused on cost-benefit analysis. That is, weighing the costs of mitigation against the costs of inaction. Can call these Benefit-Cost (BC) IAMs.

These models have very simple representations of the economy, but incorporate all potential feedbacks from the climate to the human system.

From: Calvin, O'Neill and Sue Wing, DOE Climate-Energy Workshop October 24, 2014.
Some Sustainability Indicators from BC IAMs

• Aggregate economic output with some regional disaggregation in some models
• Aggregate economic damages attributable to climate change with some regional disaggregation in some models
• Global GHG concentrations and temperature change
• Some physical impacts of climate change with some regionalization in some models
• WARNING: Key drivers of many human capital and economic sustainability indicators are inputs to - not outputs from - these models. Social indicators often not considered at all.
Other integrated assessment models (e.g., IGSM, GCAM, PIK, MESSAGE, IMAGE, MERGE) have focused on cost-effectiveness analysis, quantifying richer multi-sector transition pathways and tradeoffs and costs associated with stabilizing climate at a pre-defined levels. Can call these Detailed Process (DP) IAMs.

These models have more complex representations of different components of the earth system (e.g., energy, land, water, agriculture, forests, eco-systems with different), but have largely excluded feedbacks from the earth systems to the human systems.

From: Calvin, O’Neill and Sue Wing, DOE Climate-Energy Workshop October 24, 2014.
The MIT IGSM Model

The PBL IMAGE Model
The Japan NIES Asian Integrated Assessment Model (AIM)

AIM/Climate and Regional Geological/Climate/Ecological Information
- Soil parameters
- CO₂, SO₂, H₂O, Climate variables
 - Water Balance Model
 - Water Transport Model
- Greening
 - Potential Crop Productivity Model
 - Potential Vegetation Model
 - Infectious Disease Reproductive Model
 - Food and Drought Risk Model
 - Climate Health Service Potential Model
- Countermeasures and Mitigation Options
- Land-use Model
 - Agro-Ecological Potential Model
 - Agro-Ecological Impacts Model
- Agriculture Trade Model
- Health Impacts Model
- Water Resource Vulnerability Model
- Higher Order Impacts Models

Regional Population and Development
AIM/Emission and Regional Economic and Social Information

Potsdam Institute Integrated Assessment Framework

RD2 Models within the PIK Model Portfolio
- PIAM
 - Potsdam Integrated Assessment Modelling Framework
 - MAgPIE
 - Land use/agricultural economy
 - Downscaling
 - MAGICC
 - Natural/agricultural vegetation
- POEM
 - Potsdam Earth Model
 - Aeolus
 - Fast atmosphere model
 - REMIND
 - Energy/economy
 - LPJmL
 - Natural/agricultural vegetation
 - 3D ocean circulation
 - MOM
 - PISM
 - Ice-sheet dynamics
 - CITIES
 - CLIMATE
 - CCLM, STARS
 - WATER
 - SWIM
 - AGRICULTURE
 - IRMA
 - FOREST
 - 4C-FORESEE

Research Domain No.
Topics: Climate/ocean/ice Vegetation/water/soils Economy/energy/land use
The GCAM Model

IIASA Integrated Assessment Framework
Some Sustainability Indicators from DP IAMs

- Land-Use/Land Cover
- Eco-systems (managed and un-managed)
 - NPP
 - Water & Heat Stress
- Agriculture
 - Crop productivity by crop and region
 - Including water availability, and ozone impacts
- Energy
 - Electricity generation and generation capacity
- Water
 - Rain, irrigation potential, natural and human configured storage
- Air Quality
 - Particle emissions and ozone levels most important according to GBD
- Sea Level/Coastal Zones

WARNING: Key drivers of many human capital and economic sustainability indicators are inputs to - not outputs from - these models. Social indicators often not considered at all.
The EU CD-LINKS Project

Climate and Development Capabilities Assessment Survey

<table>
<thead>
<tr>
<th>Adaptation</th>
<th>Air pollution</th>
<th>Economy</th>
<th>Energy</th>
<th>Agriculture/Land/Nutrition</th>
<th>Health</th>
<th>Water</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change adaptation</td>
<td>Air quality</td>
<td>Near term forcing</td>
<td>Economic development</td>
<td>Innovation</td>
<td>Employment</td>
<td>Energy poverty</td>
<td>Energy security</td>
</tr>
<tr>
<td>CATSIM</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Planned Development</td>
<td>Planned Development</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>DNE21+</td>
<td>Under Development</td>
<td>Under Development</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Under Development</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>GAINS</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>GCAM</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Under Development</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>GEM-E3</td>
<td>Other: Please Specify</td>
<td>Planned Development</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>IMAGE</td>
<td>India-MARKAL</td>
<td>India-CGE</td>
<td>IFAC</td>
<td>MESSAGE-Brazil</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>MESSAGE-GLOBIOM</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>REMIND-MagPIE</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>TIMES Russia</td>
<td>Fully Operational</td>
</tr>
<tr>
<td>WITCH</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
<td>Under Development</td>
<td>Fully Operational</td>
<td>Fully Operational</td>
</tr>
</tbody>
</table>
Some Big Needs in this Work

• Data and research on ocean acidification and its impacts
• Water information - irrigation potentials and aquifer net positions
• Black and organic aerosols emissions and composition
• Subsurface carbon sink assessments
Needed?: Integrated Assessment Perspective on Integrated Climate Impacts Analysis

• Multi-sector impacts may be significant (system boundaries)
 • Energy, land, water, food, climate, poverty, health, SLR, etc.
 • Could lead to significant competition, re-allocations, transfers of inputs

• Substitution of outputs could also be significant
 • General equilibrium effects (consumption, production, supply chains)
 • Transfers, inter-state commerce, international trade and aid, etc.
 • Can often ameliorate net impacts
 • But can also provide external shocks from outside regions

• Mitigation and impacts/adaptation interactions can be large
 • Land and water for biofuels squeeze agricultural/food markets
 • Climate change leads to energy supply and demand impacts

• Climate change feedbacks
 • Global earth system and back down
 • Regional

• Policy synergies
 • Land, agriculture, forest, energy, air quality, climate
 • Example includes climate change and air quality targeted policies.
Questions
Thanks You
Basic Concepts of Integrated Assessment

• Ocean/Atmosphere/Atmospheric Chemistry
 • Conservation of momentum
 • Conservation of mass
 • Conservation of energy
 • Chemical Reactions

• Eco-systems
 • Photo-synthesis
 • Conservation of mass
 • Conservation of energy
 • Bio-Geo-Physical-Chemical Processes

• Socio-economic System
 • Birth and Death
 • Resource allocation, optimization and market equilibrium
 • Technology change and choice
 • Investment and economic growth
Some Things We Find in Social Sciences, But Not in Physics, Chemistry or Biology

• Humans have:
 – Preferences (possibly changing over time)
 – Expectations (certainly changing over time)
 – Ability to adapt
 – The ability to make contingent decisions

• These characteristics may lead to differences in:
 – Framing questions
 – Modeling systems
 – Integrating models
 – Assessing models