

Sustainable food systems and diet: models for supporting sustainability decision-making

CSIRO and Australian National University

Mark Howden and many colleagues

NAS 'Transition towards sustainability' meeting, Newport Beach, January 2016

Australian National University

CSIRO

Development of food-security models

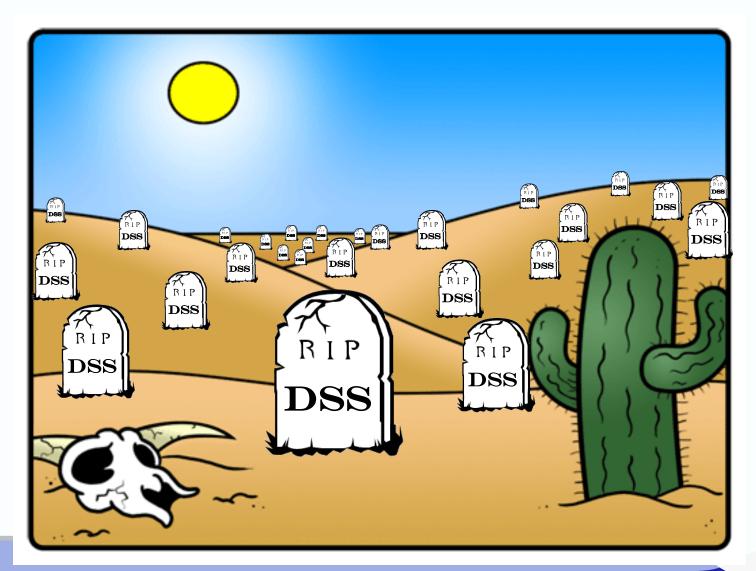
- crop yield simulation models
- IAMs particularly looking at economics/trade but increasingly at nutrition security
- regional hydrology and irrigation systems (and environmental flows and other uses)
- large-scale production-environment trade-offs
- supply or value-chains, ecosystem services, LCA, adaptive capacity, institutional change or on-farm issues like degradation or pests/diseases

Progress ?

- The Our Common Future (1987) report said that to serve food security, research needs to be less centralised, more sensitive to decision-makers conditions and priorities, to learn from and develop industry/farmer innovations, to improve engagement processes and to use place-based adaptive research that is both rigorous and relevant
- This remains largely true today

Model contributions to food security

- the evidence that the models *per se* have had a significant role in supporting decisions relating to food system sustainability and as tools for social learning and conflict resolution appears patchy
- Alternative hypotheses for this:
 - inadequate monitoring and evaluation
 - difficulty in attribution
 - disciplinary and institutional biases
 - limited actual impact
- Positive examples later



Models ain't models

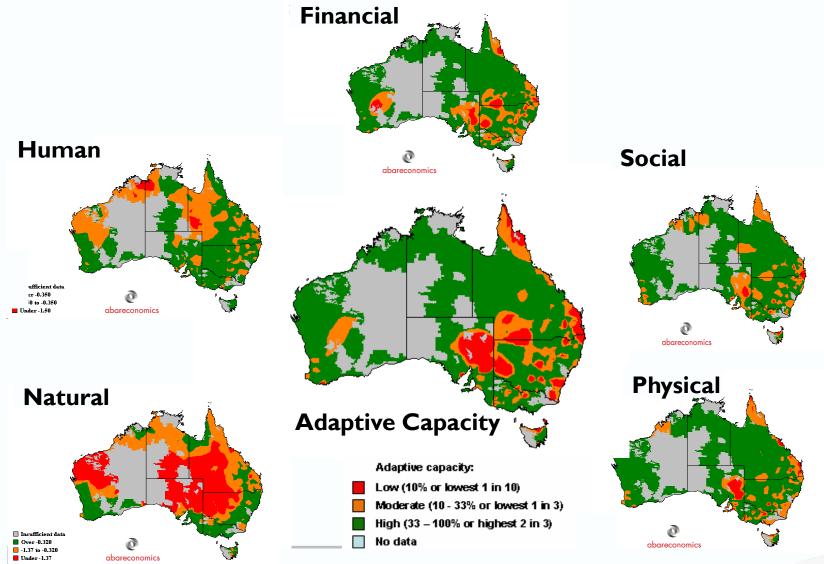
- Passioura (1994) made a distinction between 'science' models that largely self-educate the modeller and 'engineering' models for use in management and policy
- This still applies system-wide learning has been low
- Additionally, it is not just the model but the way it is used including in the framing of the issue

The decision-support landscape is littered with the carcasses of failed researcher-driven models

Carberry et al. 2002; Hayman 2003; Matthews et al. 2008

Barriers to use

- linear, knowledge-deficit, researcher-driven (real or perceived) approach
- a (hidden) expression of the modellers world view, values and priorities that does not mesh with that of the user
- are often not embedded into the social and institutional processes through which decisions are made
- by definition focus on explicit knowledge rather than the tacit knowledge which is crucial to most sustainability issues
- preference precision over utility



More barriers

- address the problem and less so the solutions or opportunities
 - and where they do address solutions usually only via incremental changes to existing systems
 (limited to those factors the model can deal with) with little strategic insight
- focus on production rather than values or value chains and to inadequately address social, cultural, biodiversity and resource sustainability aspects
 - e.g. where is the farmer-suicide sub-model ?
- susceptible to political 'capture' or marginalisation

Integrative analyses ignored by policy

Nelson et al. 2008; 2010 a,b

Uncertainties

- There are also surprisingly large uncertainties in relation to simulation model output – often much greater than the tolerance of the potential decision-makers
 - crop models
 - economic models


Pre-disposing success factors

- where 'hard' models are embedded in a broader 'soft' model
 - that addresses salience, credibility, legitimacy, that shares power and integrates knowledge from different sources resulting in actionable options and subsequent iterative and transferrable learning
 - 'knowledge producer/user' terminology is problematic
- where models operating across process scales can accelerate other processes such as plant breeding

A few examples of model impact and what we learnt

- Cotton pest expert-system DSS monitoring-model package, farmers extract the information used to create the model rules and incorporate this into their own mental models
- Seasonal climate forecasts farmers use emergent results from models for 'management gaming' to construct 'action rules', only going back to the models *in extremis*
- Indonesian livestock farm-policy interaction, meta-model from mass simulation runs in easy-to-learn/use/transfer form linked to whole-of-system scaling up model
- Farm nitrogen budget policy robust, understandable integration of data, farm and regional models, compliance regimes
- Crop DSS farmer-owned and run, tailored, validated, real time

Climate adaptation: a journey from agronomic thinking to strategic business management

2007	2009	2011	2012
 no cultivation, no- till and stubble retention guidance systems press wheels for water harvesting inter-row sowing opportunity cropping less canola and pulses hay soil testing for N and water sowing by the calendar not on moisture (dry sowing) 	 containment areas for livestock low P rates and N only just in time postpone machinery purchases no burning of stubbles shorter season and heat tolerant varieties variable sowing rate improve sheep production 	 canola only on soil moisture bought and leased more light (sandy) country concentrate on marketing (futures and foreign exchange rates) decrease debt off-farm income reduce costs improve harvest efficiency 	 simplify all operations larger paddocks – easier management improve labour efficiency improve financial management requirement for more information and knowledge

Climate adaptation: a journey from agronomic thinking to strategic business management

- The current focus on field-scale, yield models results in a focus on the:
 - tactical not the strategic
 - incremental not the systemic or transformational
 - sub-farm not the value chain
 - technical not the human
 - explicit (codified) not the tacit

Crimp et al. 2012; Venkitchalam and Busch 2012; Howden et al. 2013; Rickards and Howden 2012; Lacey et al. 2015

New efforts

- addressing impacts and responses to extremes (climate and economic), pest/diseases, ozone, mitigation
- nutrition security
- research on better integrating models with the tacit human and political processes that engender effective change (especially enhancing social learning and enlightened use of new communication technologies)
 - models have value as boundary objects
 - beware of 'illusion of inclusion'
 - requires institutional change (reward systems, roles, resourcing) and possibly new institutions (e.g. boundary organisations) but note power issues

More new efforts

- Better integration of empirical data (BIG and 'not-big') with process-models so as to reduce and better quantify uncertainties and to help improve iterative risk assessment/management
- Models for innovation system thinking cross-fertilisation from business, policy and governance
 - design-led thinking ('reprogram the business brain to think more like a designer than a number-cruncher')
 - value chains
 - model-informed support of risky innovation (e.g. by underwriting losses)
- Reflexive behaviour by researchers to encourage informed and ethical model development and use

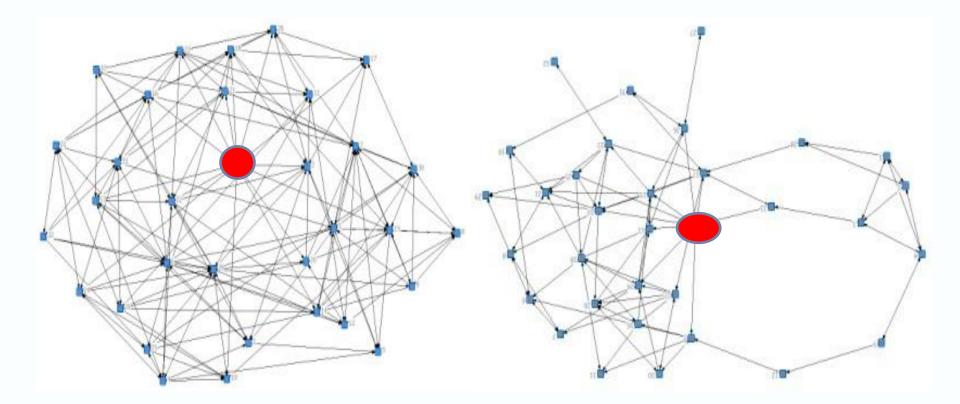
Thank you

Dr Mark Howden Chief Research Scientist

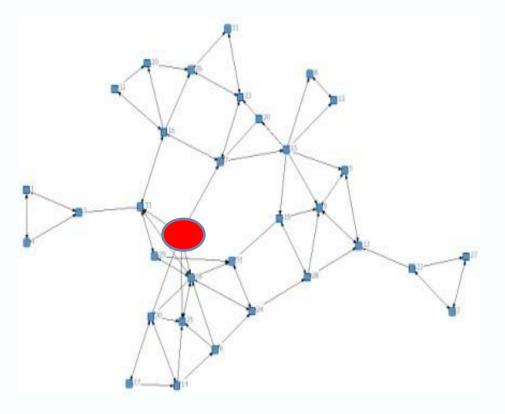
t +61 2 6246 4118e mark.howden@csiro.auw www.csiro.au/ca

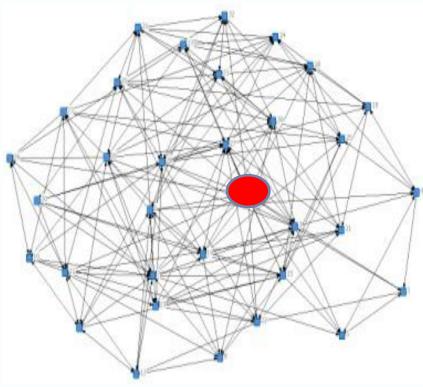
Director

ANU Climate Change Institute


- t +61 2 6215 2766
- e mark.howden@anu.edu.au

Social support networks


A. Incremental adaptor


B. Transformational adaptor

Dowd et al. (2014) reflecting Rogers (1962), Becker (1970), Granovetter (1973)

Information networks

A. Incremental adaptor

B. Transformational adaptor

Dowd et al. (2014)