Innovation Policy Challenges in a Networked World

- User, open, and collaborative innovation is in tension with the standard IP paradigm
 - User innovation is prevalent in developing countries, especially based on network technology
 - E.g. Mobile phone/financial service innovation, small businesses
 - These paradigms usually rely on low or no formal IP
 - Challenge assumption that more protection is socially beneficial or even beneficial to US interests

- Data-driven innovation, privacy and discriminatory impact
IP: Costs and Benefits

• **Benefits:**
 – motivate invention by deterring “free riding”
 – motivate disclosure rather than secrecy
 – motivate dissemination through sales and licensing

• **Costs:**
 – higher prices (deadweight losses)
 – downstream innovation “taxed” or precluded
 – transaction costs of bargaining, licensing, defining IP boundaries, litigation, etc.

• **Underlying Assumptions:**
 – Innovators must be compensated monetarily via sales
 – Innovators are completely competitive
 – Transaction costs are not too high
 – Market demand induces the “right” innovations
User, Open, and Collaborative Innovation: Where IP's Assumptions Break Down

• Innovators may have non-monetary incentives including
 – Enjoyment of creative process, sociality, altruism

• Alternatives to sales-based compensation including
 – Use, reputation, complementary business models

• Innovators may have common interests in
 • Non-monetary benefits, infrastructure, advancing or establishing a field or market

• IP transaction costs may be high due to
 • Notice problems, overlapping claims, cumulativeness, no valuation metric, one-size-fits-all legal standards

• Market demand may not induce the “right” innovations
 – Consumption externalities, inability to pay, myopia
<table>
<thead>
<tr>
<th>Non-monetary incentives</th>
<th>Biological Research Consortium, OSS</th>
<th>Blast Furnaces and Steel mills (1800s)</th>
<th>French chefs</th>
<th>Doctors (medical procedures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health, Curiosity</td>
<td>Use</td>
<td>Artistic fulfillment</td>
<td>Use, Patient health</td>
<td></td>
</tr>
<tr>
<td>Alternative Compensation mechanism</td>
<td>Reputation, public funding</td>
<td>Complementary business model</td>
<td>Reputation</td>
<td>Complementary business model, reputation</td>
</tr>
<tr>
<td>Scientific knowledge</td>
<td>Cheap infrastructure</td>
<td>Compete with old technology</td>
<td>Tailored norms</td>
<td>Patient health</td>
</tr>
<tr>
<td>Demand failure</td>
<td>Yes</td>
<td></td>
<td>Sometimes</td>
<td></td>
</tr>
<tr>
<td>Transaction costs</td>
<td>Cumulative</td>
<td>Cumulative</td>
<td>Hard to detect</td>
<td>Cumulative, hard to detect</td>
</tr>
</tbody>
</table>
OC Innovation Is Not Magic

- **Governance**
 - Norm setting and enforcement
 - Rewards (e.g. reputation)
 - Rules or norms of membership and access

- **Infrastructure to reduce costs of sharing and collaboration**
 - Databases
 - Meetings
 - Biorepositories
 - Standards for compatibility
 - Journals

- **Possible policy response?**
 - Subsidize or mandate governance and/or infrastructure
IP Can Destabilize OC Innovation

- IP may undermine OC governance
 - “Insiders” may use IP to defect
 - “Outsiders” may free ride on openly available innovation by staking out IP claims
 - Issue for public-private partnerships?

- IP can increase transaction costs of OC regimes

- IP doctrine helps delineate “pre-competitive” and competitive innovation
 - International differences in IP doctrine may complicate global OC innovation regimes
 - Converging to strong IP may undermine OC regimes

- Possible policy responses (TRIPS?):
 - Infringement exemptions (“fair use”)
 - Patentable subject matter exclusions
 - Remedies variation
Data-Driven Innovation: Panacea or Hype?

- **What data?**
 - Is it representative or biased?
 - Do the biases parallel economic, racial, gender, etc. disparities?
 - Is it accurate?
 - Errors minimized and understood
 - Is it meaningful?
 - Does the data appropriately model the phenomenon of interest?

- **Whose data?**
 - Is it proprietary or available for scientific critique and validation?
 - Do human data subjects have a say in how the data is collected and/or used?
Data-Driven Innovation: Panacea or Hype?

- **What algorithm or method?**
 - Is the algorithm open or proprietary?
 - What are the algorithm’s assumptions?
 - What are the algorithm’s limitations? Error bars?

- **What are we doing with the data?**
 - Scientific understanding? Large scale trends? Decisions about individuals?
 - “Prediction”?
 - Correlation v. Causation
 - Self-fulfilling prophecy and feedback issues?
 - Stereotyping and over-generalization?
 - Rapid change and tipping points?

- If “data is the new oil,” we should watch out for smog and oil spills
Data-Driven Innovation: Privacy and Security

• For data pertaining to individuals:

 • Who has access to the data?
 • Hackers
 • Law enforcement subpoenas
 • Malicious insiders

 • Is it “anonymized”?
 • How effectively?

 • How long is it retained?

 • Who makes decisions about its use?
 • How are use decisions made?
 • Is consent required? When is it meaningful?

 • How is the data obtained?
 • How should means of obtaining data be regulated?
 • For researchers? For commercial actors?