A Perspective on Graduate Education from the National Science Foundation

Revitalizing Graduate STEM Education for the 21st Century
Board on Higher Education and Workforce
First Committee Meeting
January 12, 2017

Joan Ferrini-Mundy
Assistant Director, National Science Foundation
Education and Human Resources
10 Big Ideas for Future NSF Investments

RESEARCH IDEAS

- **Navigating the New Arctic**
 Improve Arctic observational tools to document rapid changes on multiple scales.

- **Harnesing Data for 21st Century Science and Engineering**
 Generate a world-wide data-enabled future for the U.S. through fundamental research and education in data science.

- **Work at the Human-Technology Frontier: Shaping the Future**
 Develop "smart" technologies and environments to enhance the human experience; assess their impact on human behavior and social systems.

- **Understanding the Rules of Life: Predicting Phenotype**
 Bridge the biggest gap in biological science by determining how the environment influences an organism's unique characteristics.

- **The Quantum Leap: Leading the Next Quantum Revolution**
 Develop ways to access and manipulate the behavior of matter and energy at very small scales to make the next generation technology more accurate and efficient.

- **Windows on the Universe: The Era of Multi-messenger Astrophysics**
 Extend our understanding of the cosmos by building on NSF's unique observational assets.

PROCESS IDEAS

- **Growing Convergent Research at NSF**
 Use ideas and technologies from widely diverse fields to bring about solutions to societal problems and profound questions.

- **NSF-Includes: Enhancing Science and Engineering through Diversity**
 Tap the innovation inherent in America's diversity to strengthen the U.S. science and engineering enterprise.

- **Mid-scale Research Infrastructure**
 Develop a nimble process to fund crucial scientific infrastructure projects that fall between traditional funding boundaries.

- **NSF 2050**
 Bold, forward-thinking research that transcends traditional approaches and pushes the frontiers of exploration.
Trends in U.S. Graduate Education

- Greater interdisciplinary and team focus
- Dynamic pathways and careers - students more readily move across fields, institutions, sectors of the economy, and countries
- Greater racial/ethnic diversity, higher proportion of female students
- An increase in international students

These trends are important to understand to reach an important NSF’s strategic objective: *Integrating education and research to produce a diverse STEM workforce with cutting-edge capabilities*.
Key Recommendation: *Offer a Broader Range of Academic Options*

- To produce more versatile scientists and engineers, graduate programs should provide options that allow students to gain a wider variety of skills.

- To foster versatility, government and other agents of financial assistance for graduate students should adjust their support mechanisms to include new education/training grants to institutions and departments.

NAS 1995
Goals for NSF Investments in Graduate Education

Strategic Framework for Investments in Graduate Education (FY2016-FY2020)

- **Advance Science and Engineering (S&E) Research:** Support graduate students and graduate education to enable long-term contributions of new knowledge at the frontiers of science and engineering.

- **Broaden Participation to Promote Excellence in Research and Build the Next Generation STEM Workforce:** Recruit graduate students from a variety of geographic, demographic, social, and educational backgrounds to promote the advancement of science and a highly qualified professional workforce.

- **Build Effective Models of Graduate Education and Workforce Development:** Support the development and use of innovative models and evidence-based approaches in graduate education, including education and research about promising practices and program effectiveness.
Considerations for the Committee

- How can research about learning and about the nature and practice of science help to inform the design of graduate experiences in STEM?

- What is the current state of practice, and what innovations are in place in U.S. graduate education in STEM? What is their impact?

- How can we learn and disseminate to the appropriate constituents what we have learned from large-scale national training experiments such as NSF NRT, PSM, and NIH BEST programs, or initiatives such as NSF INCLUDES?
Scientific Drivers for Graduate Training

The grand challenges of today -- protecting human health; understanding the food, energy, water nexus; exploring the universe at all scales -- will not be solved by one discipline alone. They require convergence: the merging of ideas, approaches and technologies from widely diverse fields of knowledge to stimulate innovation and discovery.