Carnegie Mellon

Mass Energy Storage Technology
Advancement — Materials and
Manufacturing Implications

Jay Whitacre
Carnegie Mellon University



Energy Storage: 1 slide overview Carnegie Mellon
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* Focus: electrochemical energy storage only
» Not pumped hydro, chemical, thermal
» Not Fuel cells (though we do consider flow batteries)

 All electrochemical storage devices have:
» 2 electrodes made of electrochemically reversible materials

« Electrons and ions take separate paths between the electrodes, DC electric current outside

the cell performs work
Dunn et al, 18 NOVEMBER 2011 VOL 334 SCIENCE, p 9-



Materials We want to use. . . . Carnegie Mellon
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* Mn, Zn, Ca, C, Si, Na, Fe, Al, Ti, O, N,
« Can we use less refined natural oxides?
« Can we avoid fossil based organics?



Types of storage, Materials in play, . “amegieMellon
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Fig. 2. Gravimetric power and energy densities for different rechargeable batteries. Most of these

Fig. 1. Comparison of discharge time and power rating for various EES technologies. The comparisons systems are currently being investigated for grid storage applications

are of a general nature because several of the technologies have broader power ratings and longer
discharge times than illustrated (). [Courtesy of EPRI]

« Battery materials have nearly an order of magnitude less
energy/mass or volume than combustible fuels

Dunn et al, 18 NOVEMBER 2011 VOL 334 SCIENCE, p 9-



Li-ion cost projections
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— Whole Industry with 95% confidence interval [1]
Market Leaders with 95% confidence interval
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® Sakti et al, PBCM [2]
Sakti et al, Expert Elicitation[3]
® BatPaC [4]

SO @& x B @

2005 2010 2015 2020 2025 2030

Year

NOTE: capital cost per kWh is not a useful metric without
much more info on use case and degradation. . .



Highly Scaled Li-lon CarnegielViellon
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NCA = LiNiCOAIO,, LMO = LiMn,0,, NMC = LiNiMnC002
~74,000,000 kgs of processed battery materials on road today
Gigafactory production is stated to be 35 GWh/year by 2022. . .



Li-ion Bill of Materials
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e LI — salt flats iIn South America

 Co, Ni, Mn, Cu, Al — various
mines
 Fossil organic systems
» Polymer separator

» Polymer binder
» Organic solvent electrolyte



Cobalt Carnegie Mellon
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» Co price has more than doubled in past year. . .
* Other Issues with Co

* Finding; the most scaled energy storage materials
systems are not materials optimized
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Implications for extraction

Other experts in room. .
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Manufacturing




Energy Embodied vs Functional Energy Garnegie Mellon

240

200 -

150 -
3
Lu100 ]

50 -

3 3
0 — _L

CAES PHS Lilon NaS VRB ZnBr PbA

Fig. 2 A bar plot showing ESOI, the ratio of total electrical energy stored over
the life of a storage technology to its embodied primary energy. Higher values are
less energy intensive.

Besnon et al., Energy Environ. Sci., 2013, 6, 1083-1092 |



Recycling methods
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 Goal: Recover constituent materials

* In practice — downcycling for other industries

Carnegie Mellon
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» Total
 Recover constituent materials

* In practice — downcycling for
other industries

Direct
« Cathode materials are collected & reprocessed

» Use GREET to model emissions and energy consumption for cathode
materials (2 types of precursors, 1 recycled)
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» Total
 Recover constituent materials

* In practice — downcycling for
other industries

Direct
« Cathode materials are collected & reprocessed

Cathode
Battery Collection Material
Separation

» Use GREET to model emissions and energy consumption for cathode
materials (2 types of precursors, 1 recycled)



Potential emissions & energy savings from Carnegie Mellon
using recycled NCA, robust even at low
recovery rates
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Potential emissions & energy savings Carnegie Mellon
from using recycled NCA, robust even at
low recovery rates
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What would a more sustainable Carnegie Mellon
energy storage look like?

Less processing of materials before insertion

Agueous based electrolytes
« More feasible for stationary systems based on energy density
High tolerance to lower purities

Very long lifetime/cycles
 Levelized assessment needed to make cost/materials/use trades



Example: AQUION
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* Spun out of CMU in 2009

« Simple materials (MnO,, TiO, inputs), less complex manufacturing, “cradle to cradle” certified
« Pathway to $100/kWh with 3000 cycles (current about 2.5 x this)

« ~$200 M raised, 150 jobs, domestic manufacturing, ~40 MWh shipped

« Undergoing restructuring — 120 Laid off - acquisition to complete on 21 June

« Scaling a stand-alone new energy company extremely difficult. . .



