Green Energy Park Solar R&D and testing

Arab-American Frontier Symposium

The African context

0.03 \$ / kWh !

The African context

African emerging economies must bring reliable electricity

Renewable energies are an adequate solution, especially distributed PV (high potential of job creation)

of the 7 Billion people on Earth today,

have unreliable or

2.8 Billion live in areas of no access to electricity high water stress

= 100 Million

Highest percentage live in Africa!

Source: *AIE 2017

Moroccan national concept

GDP growth average of 5%	Primar energy	Electricity	
Electricity demand	X 2 until 2020	X 2 until 2020	
growth 6,5 %	X 3 until 2030	X 4 until 2030	

Moroccan national concept

Moroccan national concent

Source: Ministry of Energy, Minining, Water and Environment, ONEE, MASEN, IRESEN, 2016

technology cooperation

Technology transfer

LAUNCH 🗙 LAUNCH

VALLEY OF DEATH

EARLY-GROWTH

CONCEPTUALIZATION

Investment in innovation counters barriers and accelerates commercialization

Barriers slow launch and growth of new technologies

CREATED

OBS

-

SCALE-UP

FULL DEPLOYMENT

IRESEN Introduction

IRESEN at a glance

Created in 2011, the Research Institute for Solar Energy and New Energies (IRESEN) is at the heart of the **national energy strategy** in The Kingdom of Morocco, by its position in the fields of **applied research and innovation**.

FUNDING AGENCY

Financing of collaborative Innovative Projects

RESEARCH CENTER

Development of applied Research facilities

www.iresen.org

Identify appropriate solar technologies for Africa

Developing next solar technologies, suitable to the local conditions

Protecting the local market: standardisation, certification

www.iresen.org

Funding Agency

40 M€

2011-2017

Dedicated to support R&D & Innovation

2017-2023

80 M€

More Than 540

Researchers and PhD students supported

12 Laboratories

> Created across Morocco

Labs created across Morocco

Solar (Thermal, PV)

Bio energy & Biomass

Smart Grids & Green Cities

Energy Efficiency & Storage

Wind

Sustainable Mobility

Hassan II Univ. Energy Efficiency in Buildings / PCM Lab.

Hassan I Univ. Electronics Lab.

Cadi Ayyad Univ. Electrochemical storage Lab. **Ibn Tofail Univ.** Smart-Grids Lab Bioenergy Lab.

Al Akhawayn Univ. Nanoparticles coating Lab. Wind Energy Lab.

Green Energy Park / UM6P

Materials / surfaces treatment

Solar cells development

PV & Systems Characterization, test & Development

CSP & Systems Characterization, test & Development

Sustainable mobility

Renewable Energies

using solar and biomass

Every once in a while, a new technology, an old problem, and a big idea turn into an innovation Dean KAMEN

جامعـة محمـد السادس متعددة التخصصات التقنية MOHAMMED VI POLYTECHUIC UNIVERSITY

The Green Technologies Parks

dans l'écosystème de L'UNIVERSITÉ MOHAMMED VI POLYTECHNIQUE

RESEARCH to INNOVATION to MARKET R2I2M

TECHPARK

TECHPARK

INN	O project call R&D	INNO booster call Startups	Venture capital	
Universities				
other	GREEN	new platform		G
		new platform	Gree	REEN
	Techr	EWA Park	n INN BOOS	SME
	ology	Bio Energy & Storage Park	OVA	& Rd
E S S	PAR	Green & Smart Building Park	NOI	kD un
	S	Green Energy Park		its
				-

The first of a hole network of research and training platforms in the ecosystem of Mohamed VI Polytechnic University

REEN ENERGY PA

Research to Innovation platform model

Research to Innovation platform model

GREEN Tech PARKS

GREEN Tech PARKS

GREEN Tech PARKS

GREEN Tech PARKS

Environment

Module

Specific

GREEN Tech PARKS

Abra-

Specific

Glass/

ARC

Frame

Encapsulant

Backsheet

Interconnect

Cell

Layout

GREEN Tech PARKS

Abra-

Corresion of string connectors (30%)

Degradation of front coating (30%) Bubble formation at the BS (20%)

Disintingration of polymeres (6256)

Bubble formation at the FS (48%)

Bubble fermation at the BS (50%)

Challenge: Degradation

comparison of monitored and simulation values 20 kWp PV system performance in the GEP \geq

> The average of energy losses per month due to this degradation is around **150** kWh/Month for thin film PV system, which makes the real monthly measured energy yield 15% less than the expected monthly energy yield.

Challenge: UV

PV modules under UV influence

GREEN Tech PARKS

جامعـة محمـد السادس متعددة التخصصات التقنية MOHAMMED VI

UNIVERSITY

• 2x annual irradiation dose

2x UV power in sun belt regions = **4x UV** dose compared to

Rough estimation:

•

Does **20 years** in moderate climates correspond to approximately **5 years** in sun belt areas?

Discoloration of EVA under UV influence

> soiling impact on two PV systems (Monocrystalline & Amorphous) has been investigated.

GREEN Tech PARKS

بتعددة التخصصات التغ

MOHAMMED VI

Amorphous	polycrystalline
8	23
135 Wp	240 Wp
2	2
61,3 V	37,3 V
3,41 A	8,3 A
47 V	30,1 V
2,88 A	7,9 A
	Amorphous 8 135 Wp 2 61,3 V 3,41 A 47 V 2,88 A

- Both system are composed with two strings each.
- For the experiment period and for each technology, one string was cleaned twice a week and the other left without cleaning.
- The soiling impact can be visualized by calculating the difference between the energy produced from the clean and the soiled string: ΔE= Eclean-Esoiled

- From May the 2th to the 31st the soiling impact on two PV systems (Monocrystalline & Amorphous) has been investigated.
 - For the monocrystalline system, the difference in energy (ΔE) between the cleaned and the soiled strings keep increasing with time.
 - During the 29th of May the energy loosed due to soiling reaches ~ 2.5kWh which is the equivalent to 41% loss from the system's production.

The average energy drop due to soiling was of 1.03kWh during the whole exposition period. Which is the equivalent of <u>18.6%</u> loss from the system's production.

IRESEN

- From May the 2th to the 31st the soiling impact on two PV systems (Monocrystalline & Amorphous) has been investigated.
- For the Amorphous
 system, the difference in energy between the two strings is increasing with time, but it's not so high (~0.5kWh).
 - For the 27th the 28th and the 29th of May the energy loosed due to soiling reaches ~ 0.57kWh. This is equivalent to <u>9.1%</u> of the system's production.

The average energy loss during the whole exposition period was of 0.29kWh due to soiling. This is equivalent to <u>4.9%</u> of the system's production.

∆E (KWH)

- From May the 2th to the 31st the soiling impact on two PV systems (Monocrystalline & Amorphous) has been investigated.
- For the Amorphous
 system, the difference in energy between the two strings is increasing with time, but it's not so high (~0.5kWh).
 - For the 27th the 28th and the 29th of May the energy loosed due to soiling reaches ~ 0.57kWh. This is equivalent to <u>9.1%</u> of the system's production.

The average energy loss during the whole exposition period was of 0.29kWh due to soiling. This is equivalent to <u>4.9%</u> of the system's production.

∆E (KWH)

- The difference in the energy losses between the technologies can be explained by the humidity variation between the day and the night, and the modules temperature.
 - The Monocrystalline modules are sensible to the temperature, which contribute to the evaporation of the dewdrops on the surface. This causes an agglomeration and cementation of the dust on the surface, thus a high energy loses.

REEN Tech PARKS

جامعـة محمد السادس متعددة التخصصات التغنية MOHAMMED VI NIVERSITY

Technology	Mono Amorph
Max. energy loss	41.9% 9.1%
Average energy loss	18.6% 4.9%

Outdoor Exposure- Moroccan & African Sites

Location	Latitude	Longitude	Max Temperature [°C]	Min Temperature [°C]	Mean Temperature [ºC]	Yearly sum solar irradiance GHI [kWh/m²]	Mean wind speed [m/s]	Mean relative humidity [%]
Missour	32,86°N	-4,11°E	40,6	-1,8	18	2023	3,6	48,1
Erfoud	31,49°N	-4,22°E	44	-3,1	22,2	2044	3,1	30,1
Zagora	30,27°N	-5,85°E	45,3	-0,6	23,9	2174	3,8	23,4
Tan Tan	28,5°N	-11,32°E	32	9,2	18,8	1856	4,4	82,9
Yamousso								
ukro	6,798°N	-5,275°E	39,44	13,07	26,20	1652	2,4	75,5

GREEN Tech PARKS

Testing, training and research platform is dedicated to research and development in the field of green buildings, energy efficiency, Smart grids and electrical mobility.

What Does a Smart African City Look Like?

Developing adapted green technologies to help the African Dream happen

ikken@iresen.org

Thank vou

Developing adapted green solutions for the wealth of the future Africa

جامعــة محمـد السادس متعددة التخصصات التقنية MOHAMMEDVI POLYTECHNIC UNIVERSITY