High-Performance Solar Thermal Energy Conversion with Dry Cooling

Principal Investigator: Prof. TieJun (TJ) Zhang

Department of Mechanical and Materials Engineering
Masdar Institute, Khalifa University of Science and Technology
Abu Dhabi, UAE (Email: tjzhang@masdar.ac.ae)
Solar Power Generation: Optical Concentration

Large-Scale CSP

Light Absorption
Vapor Generation
Condensation &
Dry Air Cooling

100-MW Shams-1 Concentrated Solar Power Plant in Abu Dhabi

Saving ~200 million gallons water/year
Solar Steam Generation: Thermal Concentration

Floating solar receiver for steam generation @ 1 Sun

G. Chen (MIT) & T.J. Zhang (Masdar Inst.)

Light Absorption → Vapor Generation → Condensation → “Water” Cooling

Enhanced light absorption
(1) Gap plasmon; (2) Destructive interference

Light Absorption: Nanocomposite Absorbers

- Additional Ag deposition on cermet absorption
- Ag deposition on SiO$_2$-coated Ag layer

![Diagram of nanocomposite layer](image)

- Ag-SiO$_2$ (37 nm) on Ag (43 nm)
- SiO$_2$ (100 nm)
- Ag (100 nm)

Absorption Analysis

- (a) Absorptance (%)
- (b) Absorptance (%)
- (c) SEM image of 100 nm Ag layer
- (d) SEM image of 100 nm Ag layer
- (e) Absorptance (%)

Additional Notes

- High FF ~ 60%; Low FF ~ 30%
- 10nm Silver Nanoparticles

References

To combine the strong interference in ultrathin Ge film absorber with localized surface plasmons around Au nanopores

Bilayer ultrathin film system (Ge 20nm onto Au 150nm)

- FDTD simulation results
- Visible absorption enhancement
- Radius of holes \leq 100nm
- Good option for solar evaporation

T.J. Zhang (Masdar Inst.) & N. X. Fang (MIT)
Light Absorption: Nanoporous Absorber Fab.

[Laser interference with Lloyd mirror]

(Laser interference lithography + E-beam evaporation)

Averaged solar absorptance over 89.3%

UV-Vis-NIR Spectrophotometer

Vapor Generation: Microstructured Surfaces

E.N. Wang (MIT) & T.J. Zhang (Masdar Inst.)
Development of a dry-out heat flux model for vapor generation

- Capture the meniscus along the wicking distance
- Capture the coupled fluid flow, pressure and interface

T.J. Zhang (Masdar Inst.) & E.N. Wang (MIT)

Vapor Generation: Thin Liquid Film Evaporation

- W.L. Yang, H.X. Li, ..., T.J. Zhang, “Prediction of Thin Liquid Film Evaporation Characteristics with a Thermal Lattice Boltzmann Method”, ITherm2016, Las Vegas.

E.N. Wang (MIT) & T.J. Zhang (Masdar Institute)
Superhydrophobic microporous surfaces for Jumping Droplet-enhanced Condensation

Nanostructured micro-mesh surface morphologies

Condensation on porous (left) & flat surfaces (right)

Faster growth of droplets on microporous surfaces:
1) Only in upward direction; 2) Larger solid contact area;
3) Lower temperature on base than on wire

Quantum Simulation of Surface Wettability

First-Principles Prediction of Contact Angle

\[
\cos(\theta) = \frac{U_{SL} - U_{LV}/2}{U_{LV}/2}
\]

Acknowledgments

Earth’s Energy Budget

iac.ethz.ch

High-Performance Compact Solar Thermal Power and Cooling Systems

Profs. TieJun Zhang, Amal Al Ghaferi, Weidong Xiao (Masdar Institute of Science and Technology)
Profs. Evelyn Wang, Gang Chen, Nicholas X. Fang (Massachusetts Institute of Technology, MIT)
Flagship Research Project, Funded by Cooperative Agreement between Masdar Institute UAE & MIT USA

Transient Characterization and Energy Harvesting of Shams-1 Concentrating Solar Power Plant
Prof. TieJun Zhang (Masdar Institute of Science and Technology)
University-Industry Research Collaboration Award, Funded by UAE Ministry of Higher Education & Scientific Research – National Research Foundation, in collaboration with the Shams Power Company in Abu Dhabi