Price Discrimination and Food Waste

Timothy J. Richards* and Stephen F. Hamilton**

Presented at National Academy of Sciences, Engineering, and Medicine

Washington, DC.

* Morrison School of Agribusiness, Arizona State University ** Department of Economics, California Polytechnic State University San Luis Obispo

October 17, 2018

Introduction

3

Introduction

- Scale of food waste problem is well-understood:
 - \$165 billion in value (Buzby et al. 2014)
 - 25% of fresh water (Hall et al. 2009)
 - 18% of volume in landfills (EPA 2016)
 - 300 million bbls of oil (Hall et al. 2009)
- Waste at retail level alone is substantial:
 - 19.5 million tonnes of edible food
- Sources of pre-consumer food waste
 - Farmers: Harvesting all food not optimal
 - Retailers: Price discriminate by quality-grading
 - Minimum quality standards
 - Maintain reputation for high-quality produce
 - Results in excess supply of graded products
- Substantial loss in farm value
- Evidence that consumers will buy: Imperfect Produce

Distribution of Food Quality / WTP

Quality

Objective

イロト イ団ト イヨト イヨト

æ

- To explain how quality-based price discrimation leads to retail loss
- To empirically test price-discrimination hypothesis
- To determine the degee of loss in a fresh supply chain
- To demonstrate new loss-identification strategy
- To show impact of price-discrimination on retail and farm revenue

Contribution

3

Image: A mathematical states and a mathem

- Explain retail loss as consequence of optimizing behavior
- Devise identification strategy for supply-chain loss
- Estimate of retail loss due to quality-based price discrimination
- Estimate impact on value lost in supply chain due to WTP for quality

Economic Model

э

Economic Model

- Consumers demand produce with higher quality
- Retailers maximize profit subject to grading standard
- Grading standard is costly to maintain
- We derive an equilibrium quality standard
- Two cases:
 - Case 1: Farmers do not produce enough to meet standard
 - No food waste when grading cost are sufficiently low
 - Case 2: Farmers produce more than enough
 - Graded food sent to retail channel priced out of consumer's reach
- Simulate potential for loss in retail channel
- Scale of retail food waste problem:
 - Retail price discrimination potential driver of food waste
 - For reasonable parameters, retail loss = 37.5%

Data

Contact author: Richards (ASU)

Price Discrimination

October 17, 2018 11 / 24

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Retail Scanner Data

- Nielsen Scantrack data for bagged fresh apples
- Every store of major US retail supermarket chain
- 52 weeks from Oct. 2014 Oct. 2015
- Six varieties of apples:
 - Ambrosia
 - Fuji
 - Gala
 - Honeycrisp
 - Jazz
 - Pink Lady
- 14 different UPCs over bagged items
- Quality data from agronomic literature
 - Miller, et al. (2004, 2007)
 - Henroid et al. (2008)
- Wholesale prices from Washington Tree Fruit Assn.

Retail Data

Table I.	Table 1. Distribution of Netali Data by of C					
Item	Description	Measure	Units	Value	Std. Dev.	
Item 1	Ambrosia, 4 lb.	Retail Price	\$ / Ib	1.7894	0.1667	
Item 2	Fuji, 5 lb.	Retail Price	\$ / Ib	1.2133	0.2095	
Item 3	Fuji, 6 lb.	Retail Price	\$ / Ib	1.2366	0.0984	
Item 4	Fuji, 7 lb.	Retail Price	\$ / Ib	1.0241	0.0954	
Item 5	Gala, 5 lb.	Retail Price	\$ / Ib	1.2059	0.2415	
Item 6	Gala, 6 lb.	Retail Price	\$ / Ib	1.1973	0.1408	
Item 7	Gala, 7 lb.	Retail Price	\$ / Ib	0.9899	0.1032	
Item 8	Gala, 8 lb.	Retail Price	\$ / Ib	0.8614	0.1225	
Item 9	Honeycrisp, 4 lb.	Retail Price	\$ / Ib	2.3584	0.4606	
Item 10	Jazz, 4 lb.	Retail Price	\$ / Ib	1.6063	0.1942	
ltem 11	Jazz, 4 lb.	Retail Price	\$ / Ib	1.3948	0.0383	
ltem 12	Pink Lady, 2 lb.	Retail Price	\$ / Ib	3.4389	0.1603	
ltem 13	Pink Lady, 4 lb.	Retail Price	\$ / Ib	1.4132	0.1810	
Item 14	Pink Lady, 5 lb.	Retail Price	\$ / Ib	1.3632	0.0950	

Table 1. Distribution of Retail Data by UPC

 $\langle \Box \rangle$

D

Empirical Model

< 🗇 🕨

3

Estimate random utility model of demand

- Standard, mixed-logit form
- Allow for non-linear preference for quality
- Consistent with empirical IO literature (McManus 2007)
- Preference for quality randomly distributed over consumers
- Recover shape of WTP for quality:
 - Non-parametric, kernel-density estimator
 - Epanechnikov (1969) weighting function
 - Allows for non-normal empirical distributions
- Compare to distribution of quality grown on farm:
 - Log-normal distribution
 - Shifts according to variety
 - Henroid, et al. (2008)

Results

∃ → (∃ →

Image: A image: A

æ

Results

Table 2. Empirical Model of Price Discrimination: Non-Linear					
	Model 2	Model 1: Fixed		Random	
Variable	Estimate	Std. Err.	Estimate	Std. Err.	
Random Parameter Means					
Quality	0.0538	0.0007	0.5832	0.0636	
Price	-0.3597	0.0084	-0.3408	0.0059	
Random Paramet	ter Std. Dev	S.			
Quality			0.0207	0.0023	
Price			0.0770	0.0003	
Random Paramet	ter Function				
Qual (Variety 2)			0.0132	0.0197	
Qual (Variety 3)			0.0513	0.0199	
Qual (Variety 4)			0.0119	0.0110	
Qual (Variety 5)			0.0419	0.0483	
Qual (Variety 6)			0.0495	0.0315	
LLF	-3851.23		-235.974		
				- * 2 × * 2 × -	

Results

Table 3. Non-Parametric Kernel Density Estimates					
	Linear Model		Non-Linear Model		
	Empirical	Log-Normal	Empirical	Log-Normal	
Bandwidth	0.0354	0.0353	0.1853	0.1850	
Mean	1.6011	1.6011	0.2379	0.2379	
Standard	0.2089	0.2086	1.0947	1.0929	
Skewness	0.2918	0.0000	1.5326	0.0000	
Kurtosis-3	-1.3139	-0.0380	2.8910	-0.0380	
χ^2	6.5485	0.0047	52.7325	0.0047	
Minimum	1.2844	0.8705	0.0066	0.0005	
Maximum	1.9373	2.3317	0.6137	1.0934	
Points	1062		1062		
% Food Loss	10.0814		12.0732		

11. 2 NI. . . 17. ٠. - · · . . .

Note: Kernel densities estimated with Epanechnikov function.

æ

Image: A mathematical states and a mathem

Density of WTP for Quality

Contact author: Richards (ASU)

Table 4. Estimates of Farm Value Loss (\$ mil.)					
WTP Quality	Loss (%)	Retail Value	Farm Value		
Baseline	10%	\$350	\$109		
1%	21%	\$746	\$231		
2%	31%	\$1,099	\$341		
5%	44%	\$1,551	\$481		
10%	49%	\$1,722	\$534		
Note: Form change from EBS USDA (2018)					

Table 4. Estimates of Farm Value Loss (\$ mil.)

Note: Farm share from ERS-USDA (2018)

3

(日) (周) (三) (三)

General Equilibrium Considerations

- Farm value lost due to retail quality discrimination
- Value can be recovered by:
 - Secondary markets: eg. sharing economy
 - Direct markets: eg. farmers markets
 - Donation markets: eg. food banks
- What if we used the whole distribution of quality?
 - Average price falls
 - Quantity demanded increases
 - Returns per acre may rise
 - Long run increase in acreage possible
 - Lower imports for tradable produce
- More complete use of planted acreage
- Small "rebound" effect possible

Conclusions

æ

- Quality-based price discrimination can generate surplus food
 - Farmers produce a continuous distribution of quality
 - Retailers have an incentive to truncate that distribution
- We test this hypothesis using store-level scanner data
- Fresh produce sold through retailers is:
 - Horizontally differentiated
 - Vertically differentiated
- We use variety-, package-,market-variation to identify WTP for quality
- Distribution of quality preference is recovered via kernel density
- We find that retailer behavior is responsible for 10% loss in apples
- Retail loss represents \$100.0 m opportunity to gain farm-revenue
- Loss due to retail intermediation likely similar for other products

Thank you! Questions?

< 🗗 🕨

æ