

April 2010

Data Release, Distribution, and Cost Interpretation Statements

This document is intended to support the SS2012 Planetary Science Decadal Survey.

The data contained in this document may not be modified in any way.

Cost estimates described or summarized in this document were generated as part of a preliminary concept study, are model-based, assume a JPL in-house build, and do not constitute a commitment on the part of JPL or Caltech. References to work months, work years, or FTEs generally combine multiple staff grades and experience levels.

Cost reserves for development and operations were included as prescribed by the NASA ground rules for the Planetary Science Decadal Survey. Unadjusted estimate totals and cost reserve allocations would be revised as needed in future more-detailed studies as appropriate for the specific cost-risks for a given mission concept.

Planetary Science Decadal Survey

Mission Concept Study Final Report

Stud	y Participantsv
Ackr	nowledgmentsvi
Exec	cutive Summary vii
1.	Scientific Objectives1
Scier	ace Questions and Objectives1
Scier	nce Traceability
2.	High-Level Mission Concept6
Over	view6
Conc	ept Maturity Level7
Tech	nology Maturity7
Key 7	Frades
3.	Technical Overview9
Instru	Iment Payload Description9
Flight	t System11
Conc	ept of Operations and Mission Design15
Plane	etary Protection19
Risk	List20
4.	Development Schedule and Schedule Constraints
High-	Level Mission Schedule
Tech	nology Development Plan23
Deve	lopment Schedule and Constraints23
5.	Mission Life-Cycle Cost24
Costi	ng Methodology and Basis of Estimate24
Cost	Estimates24
Poter	ntial Cost-Saving Options

Figures

Figure 3-1. Baseline Trajectory	16
Figure 3-2. Relay Geometry and Trajectory	17
Figure 4-1. Mission Schedule	22

Tables

Table 1-1. Elemental (relative to H) and Isotopic Abundances [4]	2
Table 1-2. Science Traceability Matrix	5
Table 2-1. Concept Maturity Level Definitions	7
Table 3-1. Mass Spectrometer	10
Table 3-2. Atmospheric Structure Instrument (ASI)	10
Table 3-3. Payload Mass and Power	11
Table 3-4. Carrier-Relay Spacecraft Mass	12
Table 3-5. Carrier-Relay Spacecraft Power	13
Table 3-6. Probe Power	13
Table 3-7. Carrier-Relay Spacecraft Characteristics	14
Table 3-8. Probe Characteristics	15
Table 3-9. Timeline and Delta-V Budget	16
Table 3-10. Representative Trajectory Characteristics	17
Table 3-11. Mission Design	18
Table 3-12. DSN Tracking	19
Table 3-13. Mission Operations and Ground Data Systems	19
Table 3-14. Definition of Risk Levels	20
Table 3-15. Risk List for the Proposed Mission	21
Table 4-1. Key Phase Durations for Feasible Mission Schedule	23
Table 5-1. Costs by Phase	25
Table 5-2. Workforce by Phase	25
Table 5-3. Total Mission Cost Funding Profile	26

Appendices

- A. Acronyms
- B. References
- C. Mass Summaries and Master Equipment Lists

Study Participants

Role	Participant	Affiliation
Study Lead and Primary Author	Dr. Thomas R. Spilker	Jet Propulsion Laboratory
Giant Planets Panel Contributing	Authors	
Science Champion	Prof. Reta Beebe	New Mexico State University
Science	Dr. Heidi Hammel	Space Science Institute
Science	Dr. Amy Simon-Miller	NASA Goddard Space Flight Center
Science	R. Wayne Richie	NASA Langley Research Center (ret.)
Science	Dr. Kunio M. Sayanagi	California Institute of Technology
Science Collaborator	Prof. David Atkinson	University of Idaho
Science Collaborator	Dr. Anthony Colaprete	NASA Ames Research Center
Advanced Project Design Team (7	Feam X)	
Facilitator	Cate Heneghan	Jet Propulsion Laboratory
ACS	Shinhak Lee	Jet Propulsion Laboratory
ACS	Stephen Ringer	Jet Propulsion Laboratory
CDH	Dwight Geer	Jet Propulsion Laboratory
Configuration	Chi-Man Lau	Jet Propulsion Laboratory
Cost	Brian Bairstow	Jet Propulsion Laboratory
Customer Team Member	Tibor Balint	Jet Propulsion Laboratory
Deputy Systems Engineer	Bjorn Cole	Jet Propulsion Laboratory
EDL	Evgeniy Sklyanskiy	Jet Propulsion Laboratory
Ground Systems	Doug Equils	Jet Propulsion Laboratory
Instruments	Rob McGrath	Jet Propulsion Laboratory
Logistics	Melissa Vick	Jet Propulsion Laboratory
Mechanical	Matt Spaulding	Jet Propulsion Laboratory
Mission Design	George Carlisle	Jet Propulsion Laboratory
Power	Ronald Hall	Jet Propulsion Laboratory
Power	Paul Stella	Jet Propulsion Laboratory
Programmatics/Risk	Deb Chattopadhyay	Jet Propulsion Laboratory
Propulsion	Frank Picha	Jet Propulsion Laboratory
Science	Bill Smythe	Jet Propulsion Laboratory
Software	Suzanne Klein	Jet Propulsion Laboratory
Systems Engineer	Omair Khan	Jet Propulsion Laboratory
Telecom Systems	Michael Pugh	Jet Propulsion Laboratory
Telecom Systems	Brian Schratz	Jet Propulsion Laboratory
Thermal	Bob Miyake	Jet Propulsion Laboratory
Trajectory Visualization	Casey Heeg	Jet Propulsion Laboratory
JPL SS 2012 PSDS Lead	Kim Reh	Jet Propulsion Laboratory
NASA HQ POC	Leonard Dudzinski	NASA

Acknowledgments

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

© 2010. All rights reserved.

Executive Summary

The science objectives of the Saturn Atmospheric Probe Mission Study are divided into two groups: "Tier 1," the science floor objectives that would need to be addressed to make the mission worthwhile, and "Tier 2," the next highest priority level, with objectives that prospective Principal Investigators could reasonably add, given sufficient resources. By request from the science team, this study addressed only the Tier 1 objectives:

- Determine the noble gas abundances and isotopic ratios of hydrogen, carbon, nitrogen, and oxygen in Saturn's atmosphere
- Determine the atmospheric structure at the probe descent location(s)

The primary study objective was to determine if any probe mission to accomplish these science objectives could fit within the resource constraints of NASA's New Frontiers Program. A secondary objective was to determine if a single mission delivering two entry probes to different locations at Saturn might fit within these constraints, although this was judged unlikely.

The mission concept, which resulted from a previous Decadal Survey–sponsored study (see "Saturn Atmospheric Entry Probe Trade Study Report" [1]), is fairly straightforward and in many ways resembles a simpler version of the Galileo probe mission. There would be three main phases: launch and transfer (cruise) to Saturn; approach and targeting; and the science mission. Launch would be to a trajectory with a single Earth gravity-assist after a deep-space maneuver of 449 m/s. For this study the opportunity of August 30, 2027 was used, arriving at Saturn June 22, 2034.

The flight system would consist of a carrier-relay spacecraft and a probe. The carrier-relay spacecraft would release the probe into Saturn's atmosphere and act as a relay for probe data. The approach and targeting phase would begin about 8 months before arrival. The approach V-infinity for the study trajectory is ~7.1 km/s, steered via trajectory-correction maneuvers to the probe entry point. As a stressing case, probe spin-up (for attitude stability) and release was chosen to be 1 month before entry. This choice requires ~55 m/s of delta-V for the divert maneuver that would place the carrier-relay spacecraft on the proper trajectory to perform its data-relay task. Earlier release would decrease the required delta-V, yet still provide sufficient delivery accuracy.

Hours before the probe entry, the science mission phase would begin. An event timer on the probe would initiate the "wake-up" activities, while the carrier-relay spacecraft would power-up its relay radio receiver and turn to point its probe relay antenna to the entry site. The probe would enter at an atmosphere-relative velocity of ~27 km/s, significantly less than the Galileo probe's 47.4 km/s. After the entry heating and deceleration phase, it would deploy a drogue parachute that would assist in jettison of the aeroshell and would open the main parachute near the 0.1-bar pressure level, when primary data acquisition and radio relay to the carrier-relay spacecraft would begin. At the 1-bar level the parachute would be released, and the descent module would continue either freefalling or descending under a small drogue parachute to the nominal end of mission at the 5-bar level, some 55 minutes later and 250 km deeper than the beginning of transmissions. The carrier-relay spacecraft would continue to point at the entry site for some time after the nominal end of mission, continuing to store data in onboard memory, since the descent module would be designed for the 10-bar level and would most likely survive longer than required.

Downlink of the data is predicted to be completed a short time after the end of the data relay. The entire probe data set would be expected to be only ~2 Mb, so at a downlink rate of 1.6 kbps the entire data set could be transferred to the ground in slightly more than 20 minutes. Multiple copies could be downlinked in the Deep Space Network pass immediately after the probe descent. The carrier-relay spacecraft would be on a flyby trajectory, so, unlike the Galileo spacecraft, it would need no orbit insertion maneuver, continuing on a solar system escape trajectory for spacecraft disposal.

This mission would require no new technology developments. It would rely on the Galileo probe's carbonphenolic heatshield technology, and continued development to flight-readiness of the Advanced Stirling Radioisotope Generator (ASRG). The pathways and schedules for the use of these technologies are well understood.

This is a relatively low-risk mission concept. Most of its primary risks would be programmatic rather than technical. The main programmatic risks would involve availability of ASRGs and appropriate carbonphenolic materials. The main technical risks would involve the probe's entering a nonrepresentative region in Saturn's atmosphere, and a critical deployment after nearly seven years of soak in deep space. Because the science objectives would not require measuring the deep absolute abundances of oxygen and nitrogen, the risk of entering a nonrepresentative region would be significantly lower than that of the Galileo mission.

1. Scientific Objectives

Science Questions and Objectives

See Atkinson, D.H., et al., "Entry Probe Missions to the Giant Planets" [2].

Abstract

In situ probe missions to the outer planets are designed to satisfy three needs:

- To constrain models of solar system formation and the origin and evolution of atmospheres
- To provide a basis for comparative studies of the gas and ice giants
- To provide a valuable link to extrasolar planetary systems

The gas and ice giants offer a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth. It is within the deep, well-mixed atmospheres and interiors of the giant planets that pristine material from the epoch of solar system formation might be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Although planetary entry probes sample only a small portion of a giant planet's atmosphere, probes provide data on critical properties of atmospheres that cannot be obtained by remote sensing, such as measurements of constituents that are spectrally inactive, constituents found primarily below the visible clouds, and chemical, physical, and dynamical properties at much higher vertical resolutions than can be obtained remotely. The Galileo probe, for instance, returned compositional data at Jupiter that have challenged existing models of Jupiter's formation. To complement Galileo in situ explorations of Jupiter, an entry probe mission to Saturn would be needed. To provide for comparative studies of the gas giants and the ice giants, additional probe missions to either Uranus or Neptune would be essential.

Current State of Knowledge

Background

The atmospheres of the giant planets hold clues to the chemical nature of the refractory materials from which the original planetary cores formed, the surrounding protosolar nebula, and the subsequent formation and evolution of atmospheres. These clues could be derived from the composition, dynamics, and structure of giant planet atmospheres. There exist a number of different theories of planetary formation that attempt to explain observed patterns of enrichments across volatiles and noble gases. In at least two theories, the enrichment of heavy elements (amu >4) in the giant planets was provided in the form of solids. The core accretion model predicts that the initial heavy element cores of the giant planets formed from grains of refractory materials in the protosolar nebula. Once these cores grew to 10-15 Earth masses, hydrogen and helium, enriched with heavy elements, gravitationally collapsed from the surrounding nebula onto the central core. Additional heavy elements were subsequently delivered by primordial planetesimals (solar composition icy planetesimals [SCIPs]). However, this theory suffers from the fact that these planetesimals are not seen today. In the clathrate-hydrate (C-H) model, heavy elements are delivered to the giant planets in icy clathrate-hydrate "cages." Although the C-H theory can account for some of the abundances observed at Jupiter, such as the low abundance of neon (the only noble gas not easily trapped in clathrates), other observed abundances such as water do not closely match the predictions of the C-H model. Another theory suggests that heavy elements were incorporated into the gas accumulated by Jupiter, not in the solids. Guillot and Hueso [3] suggest a scenario comprising a sequence of refinement by settling of grains and loss of gas from the near-Jupiter nebula. To help establish the relative validity of these theories, measurements of heavy element abundances in the deep, well-mixed atmospheres of the giant planets would be needed.

Composition

Some models of planetary formation predict that the central core mass of the giant planets should increase with distance from the Sun, with a corresponding increase in the abundances of the heavier elements from Jupiter outwards to Neptune. Carbon, in the form of methane, is the only heavy element that has been measured on all the giant planets. As predicted, Voyager, Galileo, Cassini, and groundbased remote sensing have shown that the ratio of carbon to hydrogen increases from three times solar at Jupiter to 30× solar or greater at Neptune. In addition to carbon, of particular importance to constraining and discriminating between competing theories of giant planet formation are the deep atmosphere abundances of the heavy elements, particularly nitrogen, sulfur, oxygen, and phosphorus; helium and the other noble gases and their isotopes; and isotope ratios of hydrogen, helium, nitrogen, oxygen, and carbon. Also, abundances of disequilibrium species such as carbon monoxide, phosphine, germane, and arsine can provide insight into the nature of convection and other not easily observable dynamical processes occurring in a planet's deep atmosphere. Table 1-1 shows the known and suspected abundances of the heavy elements and several key isotopes at Jupiter, Saturn, Uranus and Neptune. The suspected increase in heavy element abundances for the outer planets is based on the measured increase in carbon and the predictions of the icy planetesimal model of nearly equal enrichment of heavy elements (relative to solar) in the giant planets. However, the specifics of how all the elements vary relative to each other-especially how these relative abundances might vary from Jupiter to Saturn to the ice giants—would be diagnostic of accretionary processes because of the range of volatility of their parent molecules.

		•	/	•		
Element	Sun	Jupiter/Sun	Saturn/Sun	Uranus/Sun	Neptune/Sun	
He	0.1	0.8 ±0.0	0.6–0.9	0.92–1.0	0.9–1.0	
Ne	2.1 × 10 ⁻⁴	0.59 ±0.0	?	20-30 (?)	30–50 (?)	
Ar	1.7 × 10 ⁻⁶	5.34 ±1.1	?	20-30 (?)	30–50 (?)	
Kr	2.1 × 10 ⁻⁹	2.0 ±0.4	?	20-30 (?)	30–50 (?)	
Xe	2.1 × 10 ⁻¹⁰	2.1 ±0.4	?	20-30 (?)	30–50 (?)	
С	2.8 × 10 ⁻⁴	3.8 ±0.7	9.3 ±1.8	20–30	30–50	
N	6.8 × 10⁻⁵	$.8 \times 10^{-5}$ 4.9 ±1.9 2.7–5.0 20-		20–30 (?)	30–50 (?)	
0	5.1 × 10 ⁻⁴	0.5 ±0.2 (a)	?	20-30 (?)	30–50 (?)	
S	1.6 × 10⁻⁵	1.6 × 10^{-5} 2.9 ±0.7 ?		20-30 (?)	30–50 (?)	
Р	2.6 × 10 ⁻⁷	2.6 × 10 ⁻⁷ 4.8 (b) 5.0–10.0 2		20–30 (?)	30–50 (?)	
Isotope	Sun	Jupiter	Saturn	Uranus	Neptune	
D/H	2.1 ±0.5E-5	2.6 ±0.7E-5	2.3 ±0.4E-5	5.5(+3.5,-1.5)E-5	6.5(+2.5,-1.5)E5	
³ He/ ⁴ He	1.5 ±0.3E-5	1.7 ±0.0E-5	—	—	—	
¹⁵ N/ ¹⁴ N	≤2.8 × 10 ⁻³	2.3 ±0.3 × 10 ⁻³	—	—	—	

Table 1-1. Elemental (relative to H) and Isotopic Abundances [4]

(a) Jupiter hotspot meteorology

(b) [5], relative to solar composition of [6]

Structure and Dynamics: Transport, Clouds and Mixing

Giant planet atmospheres are by no means static, homogeneous, isothermal layers. High-speed lateral and vertical winds are known to move constituents through the atmospheres' complex structures, creating the strongly banded appearance of zonal flows modulated by condensation (clouds) and by vertical and lateral compositional gradients. Foreknowledge of structure and dynamics, even if incomplete, would allow better understanding of local fractionation of atmospheric constituents, which is necessary to interpret the local abundances in terms of the physical conditions under which the inferred constituents could have formed and, thus, point to the locations within the solar system where they originated.

Measurements of structure, dynamics, and composition, in addition to providing understanding of the fundamental processes by which giant planets operate and evolve, help to verify that composition measurements are made under the proper conditions. As temperatures decrease with increasing distance

from the Sun, the expected depths of the cloud layers should also increase. At the warmer temperatures of Jupiter, equilibrium models predict three cloud layers: an upper cloud of ammonia (NH₃), a second, slightly deeper cloud of ammonium hydrosulfide (NH₄SH), and deeper still cloud(s) of water-ice and/or water-ammonia mixture. At Jupiter, water is the deepest cloud expected, with a cloud-base location predicted to be at depths of 5 to 10 bars for O/H ranging between 1 and 10× solar. In the colder environs of Saturn, Uranus, and Neptune, water-ice and water-ammonia clouds are expected to form at much greater depth. Thermochemical equilibrium calculations suggest that the base of water ice and ammonia-water solution clouds at Saturn may be at pressures of 10 bars and 20 bars, respectively, for 10× solar O/H. Although atmospheric chemistry and diffusion and condensation processes affect the location and composition of clouds and tend to fractionate constituents above the clouds, the well-mixed state is expected well beneath the clouds.

Key Science Questions

To unveil the processes of outer planet formation and solar system evolution, detailed studies of the composition, structure, and dynamics of giant planet interiors and atmospheres would be necessary. To constrain the internal structure of gas giants, a combination of both in situ entry-probe missions and remote-sensing studies of the giant planets would be needed. Although some important measurements addressing Saturn's composition, structure, and dynamics are being accomplished by the Cassini mission, other critical information is impossible to access solely via remote-sensing techniques. This is the case when constituents or processes of interest, at depths of interest, have no spectral signature at wavelengths for which the atmospheric overburden is optically thin. Additionally, when remote-sensing measurements are made it is often difficult to ascertain the precise depth. Entry probes circumvent such limitations by performing in situ measurements, providing precise vertical profiles of key constituents that could be invaluable for elucidating chemical processes such as those in forming clouds (like NH_3 and H_2S producing NH₄SH clouds), and for tracing vertical dynamics (e.g., the PH₃ profile, where the competing processes of photochemical sink at altitude and supply from depth could give a variety of profiles. depending, for example, on the strength of vertical upwelling). The key science measurements for entry probes therefore focus on those measurements best addressed utilizing in situ techniques. This data set, combined with Cassini data (in particular, the end-of-life scenario) could be contrasted with the Jupiter Galileo probe and Juno data to constrain current models of gas giants and solar system formation and more clearly define the required remote and in situ measurements of ice giants (Neptune and Uranus) to more fully constrain formation of planets and solar systems in general. Of particular value would be measurements of the vertical profile of temperatures, preferably at multiple latitudes, although preliminary measurements at a single latitude would be the first step toward more complete characterization in the future. It is not understood how energy is distributed within the atmosphere of the giant planets, how the solar energy and internal heat flux of Saturn contribute to the dynamics of the atmosphere, to what depth the zonal wind structure penetrates, and whether the zonal winds increase with depth as on Jupiter. The key science questions to be addressed by giant-planet entry-probe missions are listed in the science traceability matrix, Table 1-2.

In addition to these in situ measurements to satisfy the probe goals, knowledge of the core size and mass would be needed. The Cassini end-of-life scenario and the Juno mission should obtain detailed measurements of variations in the gravitational field of Saturn and Jupiter that could be used to constrain the internal mass distribution. These results would be highly complementary to the anticipated results of an in situ Saturn probe and the Galileo probe data. Together these data would provide robust constraints for models and for the evolution of the gas giants Jupiter and Saturn.

Giant Planet Probe Missions

Jupiter is the only giant planet to have been studied in situ. To provide improved context in the results of the Galileo probe studies of Jupiter, and to provide for additional discrimination among theories of the formation and evolution of the gas giants and their atmospheres, it would be essential that the Galileo Jupiter probe studies be complemented by similar studies at Saturn and the ice giants Neptune and Uranus. For an understanding of the formation of the family of giant planets, both ice giants and gas giants, and, by extension, the entire solar system, probe missions to the ice giants Uranus and Neptune would also be essential. Both observationally (measured carbon abundances) and theoretically

(atmospheres forming from some combination of accreting nebula gas, degassing of core material, and influx of SCIPs, etc.), there is every reason to expect the atmospheric composition of the ice giants to be greatly different from that of Jupiter or Saturn. It is recognized that all the giant planets could represent excellent targets for future probe explorations, and if special opportunities should be presented, the order in which specific giant planets are explored would be of lesser importance than the value of the science that could be returned from missions to any of these targets; however, the fact that acquisition of in situ data for Saturn would complete a comparative data set for Jupiter and Saturn promises potentially high value return for this proposed mission.

Saturn Probe

Although multiple shallow probes and multistage deep probes would be desirable, this study addresses the implementation of a proposed single shallow probe capable of determining isotopic ratios and elemental abundances as well as the temperature, pressure and density structure of the entry site. If such a mission were selected, inclusion of additional instruments or possibly a second probe would be desirable. However, the science floor of the mission defined in this study could acquire highly significant fundamental data. The proposed requirements for this mission are summarized in the science traceability matrix, Table 1-2.

Flying multiple probes would enhance the science considerably and could reduce mission risk, but to minimize cost, a single probe could be used. Even though measurements of disequilibrium species (a Tier 2 goal) change with latitude, the abundance of the noble gases and isotopic ratios are expected to be relatively insensitive to entry location. A simple probe with two instruments, an atmospheric structure instrument (ASI) and a mass spectrometer (MS), would fulfill the Tier 1 science goals and address substantially the Tier 2 goals. The nominal penetration depth would be the 5-bar level to accomplish the oxygen isotopic ratio measurements, the most demanding of the Tier 1 objectives.

The proposed probe might descend in a region not representative of the average Saturnian atmosphere. This could compromise compositional goals, but would be unlikely to affect measurements of isotopic ratios. Thus, Tier 1 science would not be sensitive to this possibility.

Tier 1 science objectives have driven the mission and flight system design. Tier 2 objectives are addressed only to the extent that the Tier 1 measurements would be applicable.

Science Traceability

Table 1-2. Science Traceability Matrix

Science Objective	Measurement	Instrument	Functional Requirement
Tier 1			
Determine the noble gas abundances and isotopic ratios of H, C, N, and O in Saturn's atmosphere	Bulk composition to ±20% Helium/solar (±2%) Ne, Ar, Kr, Xe, S, N ±20% Isotopes ±10% O profile above clouds	Mass spectrometer	Descent to 5 bar 70-minute relay Sample interval ≤250 meters
Determine the atmospheric structure at the probe descent location acceleration	Acceleration Temperature Pressure	Atmospheric structure instrument (ASI)	Descent to 5 bar 70-minute relay Sample interval ≤100 meters
Tier 2			
Determine the vertical profile of zonal winds as a function of depth at the probe descent location(s)	_	ASI	Doppler tracking
Determine the location, density, and composition of clouds as a function of depth in the atmosphere	_	ASI, MS	_
Determine the variability of atmospheric structure and presence of clouds in two locations	_	ASI (MS helpful)	_
Determine the vertical water abundance profile at the probe descent location(s)	_	MS (difficult measurement)	20 bar
Determine precision isotope measurements for light elements such as S, N, and O found in simple atmospheric constituents		MS	_

2. High-Level Mission Concept

Overview

The mission concept, which resulted from a previous Decadal Survey–sponsored trade study [1], is fairly straightforward and in many ways resembles a simpler version of the Galileo probe mission. A proposed atmospheric entry probe is the central science element of the flight system, supported by the other proposed element, a carrier-relay spacecraft that would deliver the probe to Saturn's atmosphere and would provide data relay from the probe to Earth.

Science objectives requiring measurements of isotopic ratios of key atmospheric constituents drive the need to penetrate Saturn's thick atmosphere to the 5-bar level. This drove the requirement for the entry probe's descent module to survive to at least that depth. The need for margin on that design, to handle uncertainties in the atmosphere actually encountered, motivated designing to the 10-bar level. This is not a particularly challenging task compared to the Galileo probe design. But compared to Jupiter, Saturn's much larger atmospheric scale height, coupled with its smaller gravitational acceleration, yield a longer descent time than the Galileo probe. Those differences also drive a somewhat different descent strategy: releasing the main parachute at some point (approximately the 1-bar level) to permit faster descent to the deeper levels. This would accomplish descent to the 10-bar level in about 70 minutes, with margin in the trajectory design to accommodate (with data relay) even lengthier descents if necessary. Instrumentation to make the required science measurements is covered in Section 3.

The design of the carrier-relay spacecraft is straightforward, but is driven by the critical need to use the most cost-effective solutions possible to fit within a New Frontiers Program paradigm. Some design decisions were not driven directly by science requirement thresholds. For instance, the telecommunications system for data relay from the probe to the carrier-relay spacecraft would have significantly more capability than the science floor requires, but would use standard, cost-effective components, while a lower-rate system that just meets the science floor would be a custom build. Regarding power systems, although it might be possible to use solar arrays for the carrier-relay spacecraft's primary electric power system, operating at 10 AU would push the very limit of current solar cell technology, requiring large margins and an expensive parts selection program for the solar cells. For the mission time period studied, a radioisotope power source (RPS) is less expensive and lower risk for this mission than a solar array system, and would perform well in all mission phases.

There are three main mission phases: launch and transfer (cruise) to Saturn; approach and targeting; and the science mission. For this study a launch opportunity centered on August 30, 2027, was used, with the spacecraft arriving at Saturn on June 22, 2034. The cruise trajectory would use a single Earth gravity-assist after a deep-space maneuver (DSM) of 449 m/s.

The approach and targeting phase would begin about 8 months before arrival. The approach V-infinity for the study trajectory would be ~7.1 km/s, steered via trajectory-correction maneuvers (TCMs) to the probe entry point. Probe spin-up (for attitude stability) and release was chosen to be 1 month before entry as a stressing case. This choice raises to ~55 m/s the delta-V for the subsequent carrier-relay spacecraft divert maneuver, the maneuver that would place the carrier-relay spacecraft on the proper trajectory to perform its data-relay task. Earlier release would decrease that delta-V, roughly inversely proportionally to the release-to-entry time, yet would still provide sufficient delivery accuracy. For comparison, the Galileo probe was released 5 months before entry.

Hours before the probe entry the science mission phase would begin. An event timer on the probe would initiate the "wake-up" activities, while the carrier-relay spacecraft would power up its relay radio receiver and turn to point its probe relay antenna to the entry site. The probe would enter at an atmosphere-relative velocity of ~27 km/s, significantly less than the Galileo probe's 47.4 km/s. After the entry heating and deceleration phase, the probe would deploy a drogue parachute that would help to jettison the aeroshell and open the main parachute near the 0.1-bar pressure level, when primary data acquisition and radio relay to the carrier-relay spacecraft would begin. At the 1-bar level the parachute would be released and the descent module would continue either freefalling or descent under a small drogue

parachute to the nominal end of mission at the 5-bar level, some 55 minutes later and 250 km deeper than the beginning of transmissions. The carrier-relay spacecraft would continue to point at the entry site for some time after the nominal end of mission, continuing to store data in onboard memory, since the proposed descent module is designed for the 10-bar level and would most likely survive longer than required.

Downlink of the data would be completed a short time after the data relay ends. Since the entire probe data set would be only ~2 Mb, at the downlink rate of 1.6 kbps the entire data set could be transferred to the ground in slightly more than 20 minutes. Multiple copies would be downlinked in the Deep Space Network (DSN) pass immediately after the probe descent. The carrier-relay spacecraft would be on a flyby trajectory, so unlike the Galileo spacecraft it would need no orbit insertion maneuver, continuing on a solar system escape trajectory for spacecraft disposal.

The previously mentioned probe entry speed of ~27 km/s is important. Where the Galileo probe pushed carbon-phenolic thermal protection system (TPS) technology to the limit, Saturn entry conditions are much more in-family with carbon-phenolic's "comfort zone." Notably, existing facilities can test carbon-phenolic TPS materials under conditions appropriate to entry into a hydrogen-helium atmosphere at up to 30 km/s, sufficient for prograde Saturn entries. Since NASA ARC's Giant Planets Facility has been dismantled, the ability to test under Jupiter entry conditions no longer exists in the US (or elsewhere), but that does not impact this mission concept.

Concept Maturity Level

The Advanced Projects Design Team (Team X) study conducted in support of this report assembled JPL experts in mission design, science, instrumentation, ground operations, and spacecraft subsystems. These experts made recommendations on appropriate approaches for achieving mission objectives according to the science team's posture for cost and risk. The study performed quasi-grassroots cost estimation down to work breakdown structure level 3 for the proposed project, and level 4 for the proposed spacecraft. Mass, power, and performance estimates of proposed spacecraft subsystem components were developed along with durations for major project phases (A–F). Mission and implementation risks were collected from the study team and evaluated. The sum of this information places the concept described in this report at concept maturity level (CML) 4, using the CML definitions in Table 2-1.

Concept Maturity Level	Definition	Attributes
CML 6	Final Implementation Concept	Requirements trace and schedule to subsystem level, grassroots cost, V&V approach for key areas
CML 5	Initial Implementation Concept	Detailed science traceability, defined relationships, and dependencies: partnering, heritage, technology, key risks and mitigations, system make/buy
CML 4	Preferred Design Point	Point design to subsystem level mass, power, performance, cost, risk
CML 3	Trade Space	Architectures and objectives trade space evaluated for cost, risk, performance
CML 2	Initial Feasibility	Physics works, ballpark mass and cost
CML 1	Cocktail Napkin	Defined objectives and approaches, basic architecture concept

Table 2-1. Concept Maturity Level Definitions

Technology Maturity

The only technology below TRL 6 is the Advanced Stirling Radioisotope Generator (ASRG), but per the NASA ground rules, we have assumed that maturation of this technology is funded by a separate NASA program.

Key Trades

The principal trades conducted in the course of this study involved the primary electric power source (solar vs. nuclear), and trades involving trajectories, especially Earth-to-Saturn transfer trajectories. The current design used the results of some trades examined in previous studies, such as the superiority (for this mission) of science data relay from the probe through the carrier-relay spacecraft to Earth, instead of data transmission from the probe directly to Earth [7].

Unexpectedly, the solar vs. nuclear trade study concluded that the nuclear option, specifically the use of ASRGs, would provide significant cost savings and risk reduction relative to the solar option. There are multiple reasons. Despite using no RPS, the solar option would nonetheless require radioisotope heater units (RHUs), some in the proposed probe and some in the proposed carrier-relay spacecraft. Thus it would incur some costs associated with nuclear payloads anyway, nullifying one potential cost-saving advantage of the solar option. Solar cells from a production process are not all exactly the same, and differences that are small under normal illumination conditions could be greatly magnified under the lowintensity, low-temperature (LILT) conditions in the outer solar system. For a mission to Saturn, selecting acceptable solar cells from production batches would require a significant program of testing and screening, increasing the cost per cell. Because such testing does not always guarantee expected performance, the solar arrays would need to be designed with somewhat larger margins, increasing the size, cost and risk of producing and flying already-large arrays. These large arrays would have masses far greater than the mass of ASRGs producing similar power. Solar array size and mass influenced the proposed launch vehicle selection and subsequent spacecraft operations: The dimensions and mass of the arrays would require a larger launch vehicle and significant operational constraints, contributing significantly to the total cost and risk difference.

Earth-to-Saturn trajectories were also evaluated partly on the basis of their fit with smaller launch vehicles. Other metrics include trip time and operational complexity. The study found that trajectories arriving at Saturn in the 2026–2027 time frame would suffer the effects of having Saturn near its greatest excursion away from Earth's ecliptic plane, which would require a significant out-of-ecliptic component to the final departure trajectory. This in turn would require more complex trajectories, with either more gravity-assist flybys of Venus and Earth (adding to total trip time) or multiple, sizeable DSMs requiring a large, expensive bipropellant propulsion system. Trajectories arriving at Saturn within a year or two of late 2033 would find Saturn near its ecliptic-plane crossing, reducing the out-of-ecliptic component of the departure trajectory and simplifying it, with fewer gravity-assists and/or greatly decreased delta-V requirements that would allow using much less-expensive monopropellant propulsion systems. Note that an exhaustive search for transfer trajectories has not been conducted, since it far exceeds the scope of the study. There might be trajectories that would perform better than the ones considered here, even outside of the near-2033 arrivals. Further development of this mission concept would involve a more thorough investigation of trajectory options and would consider a larger range of trajectory types. Also note that no trajectories involving Jupiter gravity-assists were considered. Two-year (approximately) windows for Jupiter gravity-assists to Saturn occur on 20-year centers. For example, the Cassini-Huygens mission made use of the gravity-assist in 1997. The next opportunity is in 2016-2017, too early for consideration under the first New Frontiers AO that is anticipated to be within this Decadal Survey's time frame (2013–2022). Following that, the window in 2036–2037 is far beyond that time frame.

3. Technical Overview

Instrument Payload Description

The instrument payload would consist of two instruments: a mass spectrometer (MS) and an atmospheric structure instrument (ASI). The estimated capabilities and requirements for these proposed instruments are given in Tables 3-1 and 3-2, respectively. The MS would determine the noble gas abundances and isotopic ratios of H, C, N, O, and Ar in Saturn's atmosphere; these data would complement Cassini science findings. This MS would be a simpler version of (i.e., would measure fewer chemical species than) the mass spectrometer flown on the Galileo mission, and so would have a strong heritage. It would cover 2 amu (atomic mass unit) to 150 amu with an accuracy of 0.3 amu. The proposed MS would use 25 watts and have a mass of only 8 kg. It would be mounted near the apex of the probe with inlets exposed to a free stream of gas flow. After the probe heatshield deployment, the inlet break-off cap would be actuated (one-time pyrotechnic), and the MS would take data continuously during probe descent until the end of mission. The compressed data rate for the MS could be as low as 80 bps, but increased data rates could yield additional useful science information.

The ASI, based on the Galileo mission probe design, would consist of three sensors for measuring temperature, pressure, and density. Data from these sensors would also be used to properly contextualize other instrument measurements. The data streams from all three sensors would be controlled by a sensor-signal conditioning circuit board for further command and data handling (C&DH). The first sensor subsystem would be an inertial measurement unit (IMU), which would consist of a 3-axis accelerometer mounted at the center of mass of the probe to an accuracy of ±1 cm. It would be sampled at a rate of 5 Hz, and would be operational when the probe first enters the atmosphere at hypersonic speeds. The second sensor would be a thermocouple for temperature measurements and would be mounted on a fixed boom extending beyond the proposed probe boundary layer by at least 3 cm. It would be sampled at 2 Hz and would begin operating only at subsonic speeds. The third sensor would measure pressure, would be mounted on a fixed boom that extends beyond the probe boundary layer, and would provide data only at subsonic probe speeds. Overall, the ASI would use 5.7 watts and would have an estimated total mass of 1.2 kg (assuming the signal-conditioning board shares the probe avionics case). The uncompressed data rate could be up to 370 bps. These data could easily be compressed by a factor of 3 to 5.

The total data rate allotted for both proposed instruments would be 450 bps. The equivalent rate for the Galileo probe was less than 120 bps. At 450 bps, a full 70-minute descent mission would generate slightly less than 1.9 Mbits of data. Future studies would define the optimum allocation of data (and thus compression) for the MS, ASI, and any other instruments a PI might want to add.

The calibration and reduction of ASI and MS data are well understood and have been demonstrated in previous missions (e.g., Galileo and Pioneer Venus).

Mass and power parameters for the payload instruments are summarized in Table 3-3. The high level of heritage for these instruments prompts a lower contingency posture as shown in the table.

Item	Value	Units
Type of instrument	MS	
Number of channels	1.0	
Size/dimensions (for each instrument)	3000.0	cm ³
Instrument mass without contingency (CBE*)	8.0	kg
Instrument mass contingency	15.0	%
Instrument mass with contingency (CBE+Reserve)	9.2	kg
Instrument average payload power without contingency	25.0	W
Instrument average payload power contingency	43.0	%
Instrument average payload power with contingency	35.8	W
Instrument average science data rate [^] without contingency	0.1	kbps
Instrument average science data rate [^] contingency	8.0	%
Instrument average science data rate [^] with contingency	0.1	kbps
Instrument fields of view (if appropriate)	N/A	degrees
Pointing requirements (knowledge)	N/A	degrees
Pointing requirements (control)	N/A	degrees
Pointing requirements (stability)	N/A	deg/s

Table 3-1. Mass Spectrometer

*CBE = Current best estimate

^Instrument data rate defined as science data rate prior to onboard processing

#Mass contingency based on Galileo heritage

Table 3-2. Atmospheric Structure Instrument (ASI)

nits
m³
g
%
g
N
%
N
ps
%
ps
rees
rees
rees
g/s

*CBE = Current best estimate

^Instrument data rate defined as science data rate prior to onboard processing

		Mass		Average Power			
	CBE (kg)				BE % Cont. (Carried at System Level)		
Mass Spectrometer	8.0	15	9.2	25.0	43	35.8	
ASI	1.2	15	1.3	5.6	43	8.1	
Total Payload Mass	9.2	15	10.5	30.6	43	43.9	

Table 3-3. Payload Mass and Power

Flight System

The proposed flight system design would be straightforward. The mass capability of the launch vehicle would provide a large mass margin, so no light-weighting would be needed. However, future reductions in power consumption might yield cost savings and risk reductions. No proposed subsystem would need space qualification. Accommodation for the science instruments would be similar to that of the Galileo probe. Mass and power properties for the carrier-relay spacecraft and probe are summarized in Tables 3-4, 3-5, and 3-6 with additional detail included in Appendix C. High-level characteristics of the carrier-relay spacecraft and probe are summarized in Tables 3-7 and 3-8, respectively.

The proposed flight system would be composed of two major flight elements: the carrier-relay spacecraft and the atmospheric probe. The proposed carrier-relay spacecraft would serve to transfer the probe from launch to an impact trajectory at Saturn and then would relay communications back to Earth until it lost the radio link with the probe. The carrier-relay spacecraft would finish its mission by playing back all probe data multiple times to ensure its reception on the ground.

The proposed carrier-relay spacecraft was designed to be low cost but to accommodate a long-duration mission to Saturn. Its subsystems would have redundancy in the most critical components only. The performance characteristics of both carrier-relay spacecraft and probe would be such that high-heritage hardware could be used to reduce both cost and mission risk. A more detailed description of the subsystems for the proposed carrier-relay spacecraft is given in the following pages.

ACS

The proposed spacecraft would be 3-axis-stabilized. Precision inertial attitude determination would be achieved using redundant star trackers and IMUs, and Sun sensors would be used for safing. Attitude control would be provided by coupled thrusters. The attitude-control subsystem (ACS) design would use high-heritage hardware and algorithms.

Propulsion

The proposed propulsion subsystem would be a monopropellant system using four 22-N main thrusters and eight 0.9-N ACS thrusters. A bipropellant system was considered, but the initial trade showed this option to be too expensive and ultimately unnecessary. The propulsion subsystem hardware would have high heritage, with no need for development or delta qualification.

Power

The proposed power subsystem would consist of two ASRGs that would provide a total of 262 W of power 7 years after launch. There would be dual-string power electronics and two Li-ion batteries with a total capacity of 32 A-hr included for energy balancing. The second electronics string would be "cold," i.e., it would not be brought on-line unless there were a fault in the primary string. The system would include a third battery to meet single-fault tolerance requirements.

The ASRGs would be used to power the flight system during cruise and to keep the batteries charged. During encounter and data downlink, the ASRGs and the batteries would be used to power the carrierrelay spacecraft. One side of an ASRG could fail, and power would still be sufficient to recharge batteries in quiet cruise. It is assumed that the ASRGs will be flight proven by the 2027 launch date. The remainder of the proposed power subsystem would consist of high-heritage components. The probe would be powered by battery alone.

Mechanical

The proposed carrier-relay spacecraft would consist of a simple cubic frame that would house the central monopropellant fuel tank and avionics. The only mechanisms would be the spin table and probe-release mechanism. The mechanical design has high flight heritage.

The proposed probe would consist of the descent module, which would house avionics and instruments. The descent module would be embedded within the aeroshell, which would house the thermal shield and descent parachutes. The probe design is based on Galileo heritage.

Thermal

Thermal protection for the proposed carrier-relay spacecraft would be accomplished through a capillarypumped heat-pipe that would use the waste heat from the ASRG units to warm the avionics and propulsion. This heat-pipe would be supplemented by additional electric heaters and passive elements, such as multilayer insulation (MLI) blankets and RHUs. The thermal design consists of high-flight-heritage components.

The proposed probe thermal-protection subsystem would consist of high-heritage passive thermal components, such as MLI blankets and RHUs.

Telecom

The proposed carrier-relay spacecraft telecom subsystem would be a direct-to-Earth (DTE) link using standard redundant X-band design for deep-space missions. DTE communication would use a 1.5-m fixed high-gain antenna (HGA). X-band would satisfy the low data rates (1.6 kbps down, 1 kbps up). To reduce cost, the proposed telecom system would not include a Ka-band system. The relay link would use a patch-array medium-gain antenna (MGA) and the Electra proximity radio (UHF). The proposed patch-array MGA would require a straightforward engineering development, while the rest of the telecom system would be high heritage.

The probe telecom system would be a reduced-functionality Electra UHF radio transmitting from a patch antenna. The probe would require the use of the carrier-relay spacecraft for data relay to Earth.

C&DH and Flight Software

The proposed command and data handling (C&DH) subsystem would consist of high-flight-heritage components and would be a fairly simple design. A trade study was performed to examine use of a simple, custom design versus a multimission architecture with flight software (FSW) build included. It was concluded that the simplicity of the custom designs of C&DH and FSW would make a custom-designed C&DH subsystem more cost-efficient for the same functionality than the more elaborate multimission architecture. The proposed carrier-relay spacecraft and probe would share the same C&DH, except that the carrier-relay spacecraft would have full block-redundancy, and the probe would be single-string. The baseline C&DH architecture would consist of a processor, memory board, telecom/probe interfaces, and chassis.

		Mass	
	CBE (kg)	% Cont.	MEV (kg)
Structures and mechanisms	106.7	23	138.7
Thermal control	32.6	27	41.4
Propulsion (dry mass)	43.4	7	46.3
Attitude control	9.9	10	10.9
Command & data handling	10.3	14	11.8
Telecommunications	28.3	14	32.2
Power	86.8	30	112.8
Carrier-Relay Spacecraft Systems contingency	—	13	64.5
Entry Probe (including instruments)	151.3	30	216.4
Total Carrier-Relay Spacecraft Dry Mass	469.3	30	675

Table 3-4. Carrier-Relay Spacecraft Mass

	Mode 1 Pwr (W) Launch	Mode 2 Pwr (W) Cruise w/ Telecom	Mode 3 Pwr (W) Cruise w/o Telecom	Mode 4 Pwr (W) Instr Ckout during Cruise	Mode 5 Pwr (W) Main Engine Mnvrs	Mode 6 Pwr (W) Probe Rels	Mode 7 Pwr (W) Data Acq from Probe	Mode 8 Pwr (W) Primary Data D/L	Mode 9 Pwr (W) Eclipse	Mode 10 Pwr (W) Safe
Power Mode Duration (hrs)	3	8	24	0.2	1	1	1.5	1	1	24
Instruments	0	0	0	31	0	0	0	0	0	0
Spacecraft Bus										
Attitude control	26	26	26	26	26	26	26	26	26	26
Command & data handling	27	27	27	27	27	27	27	27	27	27
Power	21	26	21	31	26	22	22	26	21	22
Propulsion	25	25	25	25	25	25	25	25	25	25
Telecommunications	12	97	12	12	97	30	30	97	12	33
Thermal control	11	11	11	11	8	11	11	11	11	11
Bus Total	122	211	122	131	208	141	141	211	122	144
Flight System Total	122	211	122	162	208	141	141	211	122	144
System contingency	53	91	53	70	90	61	61	91	53	62
Flight System w/ Contingency	175	302	175	232	298	202	202	302	175	206

Table 3-5. Carrier-Relay Spacecraft Power

Table 3-6. Probe Power

	Mode 1 Pwr (W) Probe Cruise (Standby)	Mode 2 Pwr (W) Preentry Wake-Up	Mode 3 Pwr (W) Aeroshell Entry	Mode 4 Pwr (W) Probe Parachute Deployment	Mode 5 Pwr (W) Probe Descent
Power Mode Duration (hrs)	24	2	0.1	0.0	1.2
Instruments	0	10	16	31	31
Attitude control	0	0	0	0	0
Command & data handling	27	27	27	27	27
Power	11	14	15	15	15
Telecommunications	0	65	65	65	65
Thermal control	3	3	3	3	3
Total	41	120	126	142	142
System contingency	18	52	54	61	61
Probe with Contingency	59	172	180	203	203

Flight System Element Parameters (as appropriate)	Value/ Summary, units				
General					
Mission life, months	82				
Structure					
Structures material	Aluminum/titanium/ composite				
Number of articulated structures	0				
Number of deployed structures	1				
Thermal Control					
Type of thermal control used	Capillary-pumped heat pipe (closed-loop w/ ASRG heat)				
Propulsion					
Estimated delta-V budget, m/s	675				
Propulsion type(s) and associated propellant(s)/oxidizer(s)	Blowdown hydrazine monopropellant				
Number of thrusters and tanks	Four 22-N engines Eight 0.9-N engines Single fuel tank				
Specific impulse of each propulsion mode, seconds	230				
Attitude Control					
Control method	3-axis				
Control reference	Inertial				
Attitude control capability, degrees	0.25				
Attitude knowledge limit, degrees	0.125				
Agility requirements	N/A				
Articulation/#-axes	N/A				
Sensor and actuator information	Star tracker, IMU, Sun sensors, 0.9-N thrusters				
Command & Data Handling					
Carrier-relay spacecraft housekeeping data rate, kbps	0.0005				
Data storage capacity, Mbits	384				
Maximum storage record rate, kbps	2				
Maximum storage playback rate, kbps	2				
Power					
Type of power source	Radioisotope (ASRG)				
Number of power sources	2				
Expected power generation at beginning of life (BOL) and end of life (EOL), watts	BOL = 280 EOL = 264				
On-orbit average power consumption, watts	175				
Battery type	Li-ion				
Battery storage capacity, amp-hours	32				

Table 3-7. Carrier-Relay Spacecraft Characteristics

Flight System Element Parameters (as appropriate)	Value/ Summary, units
General	
Design Life, months	82 (<1 month active, 81 months dormant)
Structure	
Structures material	Aluminum/titanium/ composite
Number of articulated structures	0
Number of deployed structures	1
Aeroshell diameter, m (probe)	~1
Thermal Control	
Type of thermal control used	Passive
Command & Data Handling	
Probe housekeeping data rate, kbps	0.0005
Data storage capacity, Mbits	384
Maximum storage record rate, kbps	2
Maximum storage playback rate, kbps	2
Power	
Type of power source	Primary battery
Number of active power sources	2
Number of on-orbit spare power sources	1
Expected power generation at beginning of life (BOL)	BOL = 203
On-orbit average power consumption, watts	185
Battery type	Li-SOCI2
Battery storage capacity, amp-hours	24

Table 3-8. Probe Characteristics

Concept of Operations and Mission Design

Mission Design

The proposed trajectory would have a relatively brief transit time to Saturn (under 7 years), arriving when Saturn is close to the ecliptic plane, thus minimizing postlaunch delta-V. Launch to a C3 of 49 km²/s² on August 30, 2027 would yield a 3-year Earth-return trajectory, with a DSM at aphelion that would set up the Earth gravity-assist. The Atlas V 401 launch capacity to that C3 is 1135 kg.

The proposed trajectory is illustrated in Figure 3-1. The timeline and delta-V budget are shown in Table 3-9 for an August 30, 2027 launch and June 22, 2034 arrival.

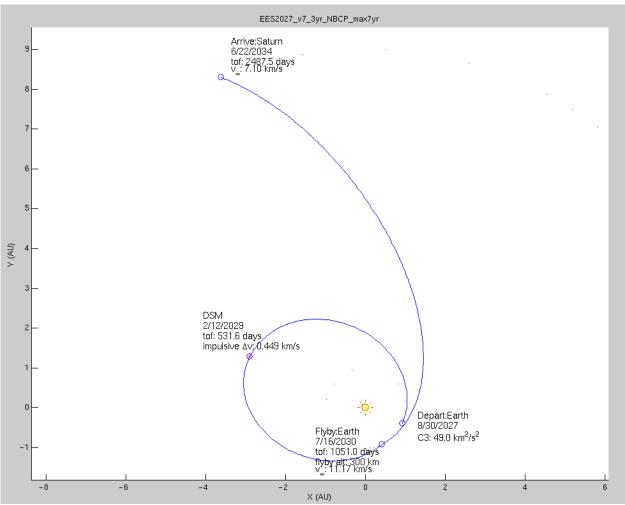


Figure 3-1. Baseline Trajectory

Event	L + days	ΔV (m/s)						
Launch	0	15 (TCM-1)						
Deep-space maneuver	531	450						
Earth flyby	1051	30						
Approach navigation	~2400	5						
Probe release	2467 (Arrival –30 days)	55						
Unallocated margin		50						
Total		590						

Table 3-9. Timeline and Delta-V Budget

While this study included some trajectory trades, the proposed baseline certainly does not represent an optimized trajectory. With a single Earth gravity-assist, launch opportunities to fly similar missions would repeat annually, but when Saturn is significantly out of the ecliptic plane there could be significant increases in C3 and delta-V requirements. Building margin into the design to accommodate that possibility is beyond the scope of this study. Instead, when Saturn is significantly out of the ecliptic plane, other trajectory types would be more appropriate. While this might change the proposed probe entry

latitude and certain details of the approach trajectory, it would not significantly affect the probe release, entry, or relay support strategies.

The probe release would occur at 30 days prior to entry; the carrier-relay spacecraft would then perform a 55-m/s divert maneuver to place itself on a relay-supporting flyby trajectory. No mission requirement drives the 30-day release; it was chosen as a "stressing case" and could be significantly longer by choice. For example, the Galileo probe release occurred 5 months before entry. Since the proposed carrier-relay spacecraft divert delta-V is roughly inversely proportional to the time between the divert maneuver and encounter, an earlier release could save propulsive delta-V. Table 3-10 summarizes the proposed probe/carrier-relay spacecraft entry and flyby characteristics. Figure 3-2 shows the relay geometry and trajectory. Table 3-11 provides parameters for key elements of the mission design.

Carrier-relay spacecraft divert	−30 days
Probe entry latitude	-22.4°
Probe entry velocity	26.9 km/s
Probe entry flight path angle	−8° (atmosphere-relative)
Probe ring-plane crossing	150,000 km, within gap between F ring and G ring (F/G)
Carrier-relay spacecraft periapse altitude	49,500 km
Carrier-relay spacecraft ring-plane crossing	147,000 km (F/G gap) incoming, 538,000 km outgoing

Table 3-10. Representative Trajectory Characteristics

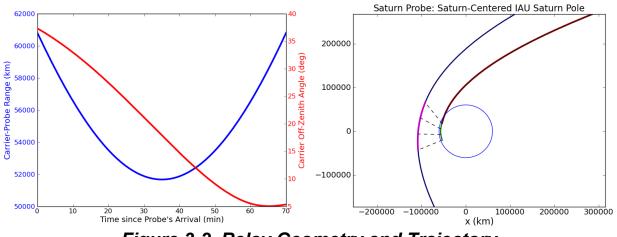


Figure 3-2. Relay Geometry and Trajectory

Parameter	Value	Units
Orbit parameters (apogee, perigee, inclination, etc.)	See trajectory plot in Figure 3-1	_
Mission lifetime	82	mos
Maximum eclipse period	60 (assumed)	min
Launch site	KSC	
Total carrier-relay spacecraft mass with contingency (no instruments)	458.6	kg
Total probe mass with contingency (includes instruments)	216.4	kg
Propellant mass without contingency	251.7	kg
Propellant contingency	7	%
Propellant mass with contingency	269.3	kg
Launch adapter mass (S/C side) with contingency	12.8	kg
Total launch mass	957.1	kg
Launch vehicle	Option 1	Туре
Launch vehicle lift capability	1135	kg
Launch vehicle mass margin	177.9	kg
Launch vehicle mass margin (%)	16	%

Table 3-11. Mission Design

Ground Systems

From a ground systems perspective, this mission would be simple on nearly every level. The one area of potential operational complexity is the proposed probe deployment and relay of communications from the probe to the carrier-relay spacecraft. There would be no unusual viewing or pointing constraints.

The sequence on the probe would be developed during cruise, uplinked to the probe, and would require no interaction from the ground. The proposed DSN contact schedule would provide for two staffing levels. The flight team would need to be staffed at normal levels only from launch to the first Earth flyby. Staffing could be reduced to quiet levels after Earth flyby and during the cruise to Saturn. Cruise staffing would be comparable to other New Frontiers missions. The science phase and data volumes for this mission would both be very small. As a result, science planning and sequencing could be scaled back for the proposed mission, and science requirements for DSN passes would be limited. The study identified no unusual constraints or requirements on tracking or ground support.

The proposed mission DSN tracking is shown in Table 3-12. The most critical aspects of the mission would occur during the deep-space maneuver, Earth flyby, probe release, and data downlink. The mission study assumed an 8-hour DSN track for every communication link opportunity.

Telecommunications information for the proposed mission operations and ground data systems is given in Table 3-13. Data would be transmitted from the carrier-relay spacecraft to the 34-m DSN stations. An average of 5 kilobytes/day would be downlinked during the spacecraft transit to Saturn, with increased volume during critical activities like the DSM, Earth flyby, and probe release. After the probe has relayed its data to the carrier-relay spacecraft, there would be a brief period of continuous tracking of the spacecraft as it sends back multiple sets of data. During this time the spacecraft would be downlinking at 1.6 kbps in intervals determined by the recharge rate of the batteries. With a total probe data volume of only ~2 Mbits, downlink of one entire copy would take slightly over 20 minutes, so a single 8-hour DSN pass could relay more than 20 copies. Spacecraft uplinks would be essentially driven by the number of tracks per week, resulting in an average of one uplink per week over the course of the mission (with the exception that there would be increased uplinks before and after critical events).

	Support Period	Hours per	No. Tracks	No. Weeks	Total Time
No (#)	Name (description)	Track (hours)	per Wk (# tracks)	Reqd (# weeks)	Reqd (hours)
1	Launch and Operations	8	21.0	2.0	378.0
2	Launch and Operations	8	14.0	2.0	252.0
3	Cruise to Deep Space Maneuver-Cruise	8	1.0	58.0	522.0
4	Cruise to Deep Space Maneuver-TCMs	8	7.0	1.0	63.0
5	Deep Space Maneuver-Cruise	8	1.0	17.0	153.0
6	Cruise to Earth Flyby-Cruise	8	1.0	56.0	504.0
7	Cruise to Earth Flyby-TCMs	8	7.0	1.0	63.0
8	Earth Flyby- Cruise	8	1.0	15.0	135.0
9	Earth Flyby-TCMs	8	7.0	2.0	126.0
10	Cruise to Saturn-Cruise	8	0.3	175.0	393.8
11	Cruise to Saturn-TCMs	8	7.0	3.0	189.0
12	Cruise to Saturn-annual health checks	8	7.0	2.0	126.0
13	Probe Deploy/Encounter-init encounter	8	7.0	19.0	1197.0
14	Probe Deploy/Encounter-extended enctr	8	21.0	4.0	756.0

Table 3-12. DSN Tracking

Table 3-13. Mission Operations and Ground Data Systems

•	•					
Downlink Information	Values					
Number of contacts per week	Table 3-12					
Number of weeks for mission phase, weeks	Table 3-12					
Downlink frequency band, GHz	8.40					
Telemetry data rate(s), kbps	1.6					
Transmitting antenna type(s) and gain(s), dBi	HGA					
	MGA					
	2x LGA					
Transmitter peak input power, watts	97 W					
Downlink receiving antenna gain, dBi	DSN 34-m					
Transmitting power amplifier output, watts	35 W					
Uplink Information						
Uplink frequency band, GHz	7.15					
Telecommand data rate, kbps	>1					
Receiving antenna type(s) and gain(s), dBi	Same as D/L					

Planetary Protection

The simplicity of the proposed mission's operations at Saturn provide for significant flexibility in addressing planetary protection issues. NASA's Planetary Protection Officer has not yet categorized Saturn, but compares it to Jupiter. The planetary protection requirement for Titan and Enceladus, which are within the Saturn system, is that no mission should exceed a probability of 10⁴ of introducing one or more viable organisms from Earth into liquid water at either location.

This mission concept's nominal plan for spacecraft disposal does not involve any categorized location. Disposal of the Saturn atmospheric entry probe would be, of course, in Saturn's atmosphere, where the extremely high temperatures at depth would vaporize even the refractory materials in the probe. Disposal of the carrier-relay spacecraft would be to a solar system escape trajectory, which would occur naturally after the carrier-relay spacecraft's Saturn flyby. Since Jupiter was the ultimate disposal site for the Galileo spacecraft and its probe, and Saturn has been accepted as the disposal site for the Cassini spacecraft, disposal of the Saturn probe in Saturn's atmosphere should also be acceptable.

Titan and Enceladus enter into only off-nominal scenarios, in which for some reason the ability to control the spacecraft's trajectory might be lost. Rigorous analyses of planetary protection probabilities have not been conducted yet for this proposed mission, but simple mathematics (area ratios with equally distributed trajectory probabilities) show that the probability of accidentally colliding with Titan is less than 10⁻⁵, and for Enceladus less than 10⁻⁷. More detailed analyses could show that by using actual trajectory probability distributions, those collision probability estimates would decrease by orders of magnitude, with no adjustments made to the trajectory. Then, by adjusting the Saturn arrival date by a few days, those probabilities could be further reduced with no significant impact on the science mission.

Risk List

In the study, four medium (yellow) risks and three low (green) risks were identified, including both mission risks and implementation risks. The definitions used to score the risks are given in Table 3-14. Table 3-15 shows the seven risks identified for the proposed mission. In addition to these mission-specific risks, there is a programmatic risk of not having sufficient plutonium to fuel the ASRGs.

	Mission	Risk	Implementation Risk						
Levels	Impact	Likelihood of Occurrence	Impact	Likelihood of Occurrence					
5	Mission failure	Very high, >25%	Consequence or occurrence is not repairable without engineering (would require >100% of margin)	Very high, ~70%					
4	Significant reduction in mission return (~25% of mission return still available)	High, ~25%	All engineering resources would be consumed (100% of margin consumed)	High, ~50%					
3	Moderate reduction in mission return (~50% of mission return still available)	Moderate, ~10%	Significant consumption of engineering resources (~50% of margin consumed)	Moderate, ~30%					
2	Small reduction in mission return (~80% of mission return still available)	Low, ~5%	Small consumption of engineering resources (~10% of margin consumed)	Low, ~10%					
1	Minimal (or no) impact to mission (~95% of mission return still available)	Very low, ~1%	Minimal consumption of engineering resources (~1% of margin consumed)	Very low, ~1%					

Table 3-14. Definition of Risk Levels

Table 3-15. Risk List for the Proposed Mission

Risk	Level	Description	Impact	Likelihood	Mitigation
		All Options			
Critical relay link between probe and carrier-relay spacecraft		Failure of relay link.	5	1	Redundant telecom relay system in carrier- relay spacecraft
Availability of TPS materials for probe	М	Programmatic risk that carbon-phenolic production ceases. Currently there are multiple vendors with a large production rate, and adequate testing facilities.	5	1	Consider multiple potential vendors
Probe deployment is a critical event	М	Probe fails to deploy	5	1	Redundant deployment mechanisms
Failure of an ASRG	М	Failure of an entire ASRG would result in mission failure. Design would be robust to failure of half an ASRG.	5	1	Include a spare ASRG in design
Mission duration	L	Reliability is more difficult to achieve for longer missions.	5	3	Standard long-life mission design principles
Entry site not characterized	L	No images, spectra, or thermal measurements are planned for entry site. Lack of context might make it difficult to interpret data.	2	2	Ground-based imaging of entry site
Descent into anomalous area	L	Probe might descend in region that is not representative of the average Saturnian atmosphere. This could compromise compositional goals, but unlikely to affect measurement of isotopic ratios (based on Galileo experience the probability is 1).	1	3	Science investigations exclude affected measurements

4. Development Schedule and Schedule Constraints

High-Level Mission Schedule

This proposed Saturn probe mission concept uses a 64-month development project (see "Development Schedule and Constraints"), 81 months of postlaunch flight operations, and 6 months of data analysis after termination of flight operations. Figure 4-1 shows a feasible high-level schedule for the proposed mission. Table 4-1 provides predicted durations of key phases in such a schedule. Phase A of a development project using the particular trajectory selected would begin in mid-2022, leading to launch on August 30, 2027, with commissioning at the end of Phase D one month later. On February 12, 2029, a DSM would set up the Earth-gravity-assist flyby of July 16, 2030 that would send the spacecraft to a Saturn arrival on June 22, 2034. About 8 months before arrival, preparations for probe release and entry would begin. Probe release would occur one month before arrival, and the carrier-relay spacecraft divert maneuver would follow immediately after release.

Spacecraft disposal would require no expenditure of resources. Since the proposed probe descent mission naturally would result in the destruction of the probe minutes after its prime mission would be over, and there would be no science instruments on the proposed carrier-relay spacecraft, there would be no useful option for an extended mission. Carrier-relay spacecraft disposal would be by means of a solar system escape trajectory, which would be the carrier-relay spacecraft's natural trajectory after the Saturn flyby.

			Schedule for 1149 SSEDS Saturn Probes 2010-03																						
Basic Mission (Mostly in some new technology,		W & SW,																							
Phase	Start Dat	End Date	Apr-22	Aug-22	Dec-22	Mar-23	Jul-23	Nov-23	Mar-24	Jul-24	Oct-24	Feb-25	Jun-25	Oct-25	Jan-26	May-26	Sep-26	Jan-27	May-27	Aug-27	Dec-27	Apr-28	Aug-28	Dec-28	Mar-29
1149 SSEDS Saturn Pro	bes 2010-0	03								П		Ш													
MCR	05/28/22	05/30/22	u		Ш	Ш		Ш	Ш	Ш		Ш	Ш	Ш	Ш	Ш			Ш	Ш	Ш	Ш	ПТ	Ш	Ш
Ph A Project Definition	05/28/22	02/22/23				П	\square	Ш	Ш	Ш			Ш		Ш	ΠT	П	Ш	Ш	Ш	Ш	Ш	П	Ш	Ш
PMSR	02/28/23	03/02/23	П		ΠL			Ш	Ш	Ш		Ш	Ш		Ш	Ш	П		Ш	Ш		Ш	П	Ш	
Ph B Preliminary Des	03/06/23	02/29/24	П							Ш			Ш		Ш				Ш	Ш	Ш	Ш		\square	m
CR/PDR/Tech Cutoff	02/29/24	03/03/24	П		Ш	Π		I	J	Ш	Ш		Ш		Ш	ΠT	П	Ш	Ш	Ш	Ш	Ш	П	Ш	Ш
Ph C Design	02/29/24	01/24/25	П		Ш	Ш		Ш			Ш		Ш	Ш	Ш	Ш			Ш	Ш	Ш	Ш	ПТ	Ш	Ш
Margin	01/24/25	02/28/25			Ш			Ш		Ш				Ш	Ш		П		Ш	Ш		Ш	Ш	Ш	Ш
CDR	02/28/25	03/03/25			Ш			П		Ш		u			Ш										
Ph C Fabrication	03/03/25	08/15/25																							
Margin	08/15/25	08/30/25																							
Ph C S/S I&T	08/30/25	02/11/26																							
Margin	02/11/26	02/28/26																							
ARR (ph D)	02/28/26	03/03/26													u										
Proj I&T (ATLO)	03/03/26	03/13/27																							
Margin	03/13/27	05/30/27																							
PSR	05/30/27	06/02/27																	u						
Launch Ops	06/02/27	08/10/27																							
Margin	08/10/27	08/30/27	Ш		Ш	Ш	\prod	Ш		Ш		Ш	Ш	\prod	Ш	Ш	Ш	Ш	\prod	Ш	\prod	ШГ	ШГ	Ш	Ш
Launch	08/30/27	09/20/27			Ш	\prod		Ш		Ш		Ш	Ш				Ш		Π	u					
L+30-end Ph D	09/20/27	10/20/27			$ \top $			\square							IT				$ \top $				IT	$ \top $	
Phase E	10/20/27	07/15/34																							

Figure 4-1. Mission Schedule

Project Phase	Duration (Months)
Phase A—Conceptual Design	9
Phase B—Preliminary Design	12
Phase C—Detailed Design	24
Phase D—Integration & Test	19 (carrier-relay spacecraft) 6 (probe, delivered to System I&T)
Phase E—Primary Mission Operations	81
Phase F—Data Analysis	6
Start of Phase B to PDR	12
Start of Phase B to CDR	24
Start of Phase B to delivery of instruments to probe	36
Start of Phase B to delivery of carrier-relay spacecraft	36
Start of Phase B to delivery of probe	36
System-level Integration & Test	15
Project total funded schedule reserve	5.5
Total development time phases B–D	55

Table 4-1. Key Phase Durations for Feasible Mission Schedule

Technology Development Plan

This proposed mission would require no new technology development. Development of the ASRG is assumed to be completed by a separate NASA development program.

Development Schedule and Constraints

This proposed mission concept involves two elements—a carrier-relay spacecraft and an instrumented atmospheric probe. The mission complexity would be similar to that of a Discovery mission, except that the mission would go to the outer solar system. The reference schedules used in this report are derived from the JPL mission schedule database, which goes back to Voyager.

The schedule would be based on a typical AO-driven mission. The assumption for this schedule is that there would be no new technology development for the mission. Though some heritage could be claimed from the Galileo mission, a probe has not previously been designed for Saturn atmosphere, so there could potentially be additional complexity and new engineering beyond a basic, fully inherited mission. At this level of detail, development time and expected delivery dates for instruments are not determined: The assumption is that the instruments would be delivered to probe integration and test (I&T). The probe would then be delivered to project system I&T for integration onto the carrier-relay spacecraft.

The instruments would be integrated into the probe; then the probe would be integrated onto the carrierrelay spacecraft. Probe–carrier-relay spacecraft integration would happen fairly late in the project system I&T process, so much of the I&T efforts could be performed in parallel.

The proposed mission would have a robust launch window duration. There would be a similar launch opportunity in 2026. A launch slip past 2027 would most likely require a different type of trajectory, with unknown effects on the project schedule.

5. Mission Life-Cycle Cost

Costing Methodology and Basis of Estimate

JPL's Team X generates a most likely cost for the JPL standard work breakdown structure (WBS) that may be tailored to meet the specific needs of the mission being evaluated. These estimates are done at WBS levels 2 and 3 and are based on various cost-estimating techniques. These estimating methods, not exclusive to each other and often combined, consist of grassroots techniques, parametric models, and analogies. The models for each station at Team X (a total of about 33 models) have been built and validated, and each model is owned by the responsible line organization. The models are under configuration-management control and are used in an integrated and concurrent environment, so the design and cost parameters are linked. These models are customized and calibrated using actual experience from completed JPL planetary missions. When these models have been applied, the resultant total estimated Team X mission costs have been consistent with mission actual costs.

The cost-estimation process begins with the customer providing the base information for the costestimating models and defining the mission characteristics, such as

- Mission architecture
- Payload description
- Master equipment list (MEL) with heritage assumptions
- Functional block diagrams
- Spacecraft/payload resources (mass [kg], power [W], etc.)
- Phase A–F schedule
- Programmatic requirements
- Model-specific inputs

Most of the above inputs are provided by the customer through a Technical Data Package.

For Decadal Survey missions, the following specific guidelines were also followed:

- Reserves were set at 50% for phases A–D
- Reserves were set at 25% for Phase E.
- Costs for the ASRGs were provided by the customer.

The cost for the launch vehicle was taken from the Decadal Survey ground rules.

Cost Estimates

Tables 5-1 and 5-2 show costs and workforce by phase for all science activities for the proposed mission. The Total Mission Cost Funding Profile is shown in Table 5-3.

	A \$k	B \$k	C \$k	D \$k	E \$k	F \$k	Total \$k	
Science	200.1	1175.3	4933.6	2286.7	7125.1	3240.0	18960.9	
Science Management	95.3	703.6	1361.7	1078.0	2254.2	1184.1	6677.0	
Science Office	95.3	703.6	1361.7	1078.0	2254.2	1184.1	6677.0	
Science Implementation	104.8	471.7	3571.9	1208.7	4870.9	2055.9	12283.9	
Participating Scientists	36.2	48.2	310.8	273.4	594.3	735.3	1998.1	
Teams Summary	68.6	423.5	3261.1	935.3	4276.5	1320.7	10285.7	

Table 5-1. Costs by Phase

Table 5-2. Workforce by Phase

	A W-M	B W-M	С W-M	D W-M	E W-M	F W-M	Total W-M	Total W-Y
Science	5.0	31.2	175.1	70.5	216.9	115.8	614.4	51.2
Science Management	2.0	13.7	29.3	23.2	17.1	32.7	118.0	9.8
Science Office	2.0	13.7	29.3	23.2	17.1	32.7	118.0	9.8
Science Implementation	3.0	17.4	145.8	47.3	199.8	83.1	496.4	41.4
Participating Scientists	1.4	1.8	11.9	10.5	23.7	29.4	78.6	6.6
Teams Summary	1.6	15.6	134.0	36.8	176.1	53.6	417.8	34.8

Potential Cost-Saving Options

Many cost-saving avenues were explored for this proposed mission concept, so few additional ones remain unused, but some of them could be significant. Examples of remaining avenues include the following:

- If the Falcon 9 Heavy were to become available in this time frame, cost savings might be achieved by use of that launch vehicle.
- Cost savings might be realized by having an industry build of the carrier-relay spacecraft.

Table 5-3. Total Mission Cost Funding Profile

(FY costs¹ in Real Year Dollars, Totals in Real Year and 2015 Dollars)

		00010	mitteu		<u>Jonaro,</u>	TULAIS	nittear	T Cui ui		Donui	5/				
														Total	Total
Item	FY2022	FY2023	FY2024	FY2025	FY2026	FY2027	FY2028	FY2029	FY2030	FY2031	FY2032	FY2033	FY2034	(Real Yr.)	(FY 2015)
Cost															
Phase A Concept Study (included below)	4.2	5.3												9.5	7.7
Technology Development (w/ Reserves)														0.0	0.0
			Phase	e A-D											
Mission PM/SE/MA	0.4	5.9	19.3	26.8	27.6	28.1								108.2	81.9
Pre-launch Science	0.0	0.6	2.0	2.8	2.9	3.0								11.4	8.6
Instrument PM/SE	0.0	0.0	0.0	0.0	0.0	0.0								0.0	0.0
Probe Payload	0.2	2.3	7.6	10.5	10.8	11.0								42.4	32.1
Flight PM/SE	0.2	3.2	10.4	14.5	14.9	15.2								58.6	44.3
CRSC	1.1	14.6	47.5	66.1	67.9	69.3								266.4	201.7
Probe	0.2	2.4	8.0	11.1	11.4	11.6								44.7	33.8
Aeroshell	0.3	4.4	14.2	19.8	20.3	20.7								79.8	60.4
MSI&T	0.2	2.8	9.2	12.7	13.1	13.4								51.4	38.9
Ground Data System Dev	0.1	1.3	4.1	5.7	5.8	6.0								22.9	17.4
Navigation & Mission Design	0.0	0.6	2.0	2.8	2.9	2.9								11.3	8.5
Total Dev. w/o Reserves	2.9	38.2	124.3	172.9	177.6	181.2								697.0	527.6
Development Reserves	1.3	17.6	57.3	79.8	81.9	83.6								321.6	243.4
Total A-D Development Cost	4.2	55.8	181.6	252.7	259.5	264.9								1018.7	771.0
Launch services			40.4	70.3	72.2	73.7								256.6	193.0
										Phase E					
Phase E Science							2.1	2.2	2.3	2.3	2.4	2.5	2.1	15.9	10.4
Other Phase E Cost							12.3	12.6	13.0	13.3	13.7	14.1	11.9	90.9	59.4
Phase E Reserves							3.5	3.6	3.7	3.8	3.9	4.0	3.4	25.7	16.8
Total Phase E Cost							17.9	18.4	18.9	19.4	19.9	20.5	17.4	132.4	86.5
Program Cost	4.2	55.8	222.1	323.0	331.7	338.6	17.9	18.4	18.9	19.4	19.9	20.5	17.4	1407.7	1050.5
Education/Outreach		0.1	0.4	0.5	0.5	0.5	0.9	1.0	1.0	1.0	1.0	1.1	0.9	8.8	6.0
Other														0.0	0.0
Total NASA Cost	\$4.2	\$55.9	\$222.4	\$323.5	\$332.2	\$339.1	\$18.8	\$19.4	\$19.9	\$20.4	\$21.0	\$21.5	\$18.3	\$1,416.5	\$1,056.5
												Total Mis		t (FY2015)	\$1,056.5

¹Costs include all costs including any fee ²MSI&T—Mission System Integration and Test <u>and</u> preparation for operations

Appendix A. Acronyms

ABSL	ABSL Power Solutions (company name)	GNC (G&NC) GSE	guidance and navigation control ground-support equipment
ACS	attitude-control subsystem	H/W	hardware
ASI	atmospheric structure instrument	HGA	high-gain antenna
ASRG	Advanced Stirling Radioisotope Generator	I&T	integration and test
ATLO	assembly, test, and launch	IMU	inertial measurement unit
	operations	JPL	Jet Propulsion Laboratory
BOL	beginning of life	LEOP	launch and early operations phase
BRE	Broad Reach Engineering	LGA	low-gain antenna
BTE	bench test equipment	LILT	low-intensity, low-temperature
BWG	beam waveguide	LV	launch vehicle
C&DH	command and data handling	MEL	master equipment list
CBE	current best estimate	MEL	mass element list
CDR	Critical Design Review	MEV	maximum expected value
CML	concept maturity level	MGA	medium-gain antenna
CPU	central processing unit	MLI	multilayer insulation
CRSC	carrier-relay spacecraft	MOS	mission operations system
D/L	downlink	MS	mass spectrometer
DB	database	MSA	mission support area
DSN	Deep Space Network	NDA	nondisclosure agreement
DSM	deep-space maneuver	NICM	NASA Instrument Cost Model
DTE	direct to Earth	NRC	National Research Council
EEIS	end-to-end information system	NRE	nonrecurring engineering
EM	engineering model	PSDS	Planetary Sciences Decadal
EOL	end of life	Survey	
ETR	Eastern Test Range	RCS	reaction-control subsystem
F/G	gap between F ring and G ring	RHU	radioisotope heater unit
FER	frame error rate	ROM	rough order of magnitude
FPGA	field-programmable gate array	RPS	radioisotope power source
FSW	flight software	SCIP	solar composition icy planetesimal
FTE	full-time equivalent	SDST	small deep-space transponder
FY	fiscal year	SSR	solid-state recorder
GDS	ground data system	SW	software
GFE	Government-furnished equipment	ТСМ	trajectory-correction maneuver

TRL	technology readiness level
TTC&M	tracking, telemetry, command, and monitoring
TTC	telemetry tracking and command
TWTA	traveling-wave tube amplifier
U/L	uplink
V&V	verification and validation
WBS	work breakdown structure

Appendix B. References

- [1] Jet Propulsion Laboratory, "Saturn Atmospheric Entry Probe Trade Study Report," May 2010.
- [2] Atkinson, D.H., et al., "Entry Probe Missions to the Giant Planets," Decadal White Papers. Filename Atkinson_Giant_Planets_Entry_Probe.pds, 2009. Available online: <u>http://www.mrc.uidaho.edu/~atkinson/Papers/Publ/OutrPlanPrbsWhiteppr_Final.pdf</u>.
- [3] Guillot, T., and R. Hueso, "The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc," Monthly Notices of the Royal Astronomical Society: Letters, Volume 367, Issue 1, pp. L47–L51, 2006.
- [4] Atreya, S.K., "Saturn Probes: Why, Where, How?" Proceedings of the 4th International Planetary Probe Workshop, NASA Jet Propulsion Laboratory Document, 2007.
- [5] Fletcher, L.N., G. Orton, N. Teanby, and P. Irwin, "Phosphine on Jupiter and Saturn from Cassini/CIRS," *Icarus* 202 (2), 543–564, 2009.
- [6] Grevesse, N., M. Asplund, and A. Sauval, "The Solar Chemical Composition," Space Sci. Rev. 130 (1), 105–114, 2007.
- [7] Jet Propulsion Laboratory Advanced Projects Design Team (Team X) Study 976, "Saturn Probe Follow-On," delivered to Johnny Kwok, Jet Propulsion Laboratory, April 4, 2008.

Appendix C. Mass Summaries and Master Equipment Lists

The following mass summaries and MELs are included in this appendix:

- Probe
- Carrier-relay spacecraft

Probe Mass Summary

	Mass		Subsys	CBE+ Cont.
	Fraction	Mass (kg)	Cont. %	(kg)
Payload on Probe				
Instruments	6%	9.2	15%	10.5
Payload Total	6%	9.2	15%	10.5
Additional Elements Carried by Probe				
Descent Module Main Parachute	3%	5.0	30%	6.5
Mortar + cover + pilot (drogue)	1%	2.0	30%	2.6
Heat Shield Structure + Heat Shield TPS	47%	71.0	30%	92.3
Backshell Structure	3%	5.0	30%	6.5
Backshell TPS	5%	7.0	30%	9.1
Heat Shield Seperation Hardware	2%	3.0	30%	3.9
Carried Elements Total	61%	93.0	30%	120.9
Descent Module				
Attitude Control	0%	0.0	0%	0.0
Command & Data	3%	5.2	14%	5.9
Power	9%	13.9	30%	18.1
Propulsion Hardware	0%	0.0	0%	0.0
Structures & Mechanisms	12%	18.0	30%	23.4
Cabling	3%	4.3	30%	5.5
Telecom	2%	2.9	10%	3.2
Thermal	3%	4.9	24%	6.1
Descent Module Total		49.2	27%	62.2
Probe Total		151.3	28%	193.6
Subsystem Heritage Contingency		42.3		
System Contingency		22.7		
Probe with Contingency		216		

Probe MEL

	CBE Mass Per Unit	# of Units	Current Basic Est.	%-Unc. (% of CBE)	Predicte Basic Est
ich Mass			151.3 kg	43%	216.4 k
aunch Vehicle PLA			0.0 kg	30%	0.0 kg
tack (w/ Wet Element)			151.3 kg	43%	216.4 k
Useable Propellant			0.0 kg	0%	0.0 kg
Stack (w/ Dry Element)			151.3 kg	43%	216.4 k
Carried Elements			93.0 kg	30%	120.9 kg
Descent Module Main Parachute			5.0 kg	30%	6.5 kg
Mortar + cover + pilot (drogue)			2.0 kg	30%	2.6 kg
Heat Shield Structure + Heat Shield TPS			71.0 kg	30%	92.3 kg
Backshell Structure			5.0 kg	30%	6.5 kg
Backshell TPS			7.0 kg	30%	9.1 kg
Heat Shield Seperation Hardware			3.0 kg	30%	3.9 kg
Dry Element			58.3 kg	64%	95.5 kį
Element	ĺ		58.3 kg	64%	95.5 k
Dry Element			58.3 kg	64%	95.5 k
System Contingency			22.7 kg	39%	55.5 Ng
Subsystem Heritage Contingency on Descent Module			14.4 kg	25%	
Pavload			9.2 kg	15%	10.5 k
Instruments		2	9.2 kg	15%	10.5 kg
Mass Spectrometer	8.0 kg	1	8.0 kg	15%	9.2 kg
ASI	1.2 kg	1	1.2 kg	15%	1.3 kg
Bus	1.2 Kg	-	49.2 kg	27%	62.2 kg
Attitude Control		1	0.0 kg	0%	02.2 kg
Shielding:	0.0 kg	1.0	0.0 kg	0%	0.0 kg
Command & Data	0.0 Kg	6	5.2 kg	14%	5.9 kg
Processor: RAD750-Box Component	0.6 kg	1	0.6 kg	5%	0.6 kg
Memory: MOAB-Box component	0.0 kg	1	0.3 kg	17%	0.0 kg 0.4 kg
Telecom I F: CAPI-Box component	0.3 kg	1	0.3 kg	17%	0.4 kg
Backplane: BRE Backplane/PCU-Box component	0.3 kg	1		17%	
Chassis: BRE Chassis-Box component	2.9 kg	1	0.3 kg 2.9 kg	17%	0.4 kg 3.4 kg
Analog I F: MREU	0.8 kg	1	0.8 kg	6%	0.9 kg
Power	0.0 Kg	13	<u> </u>	30%	18.1 kg
Li-SOCI2 (Primary Battery)	1.2 kg	3	13.9 kg 3.9 kg	30%	
	1.3 kg	3 1			5.0 kg
Thermal Battery (Thermal Battery) Chassis	1.1 kg	1	1.1 kg	30%	1.5 kg
Load Switches Boards	2.3 kg		2.3 kg	30%	3.0 kg
Pyro Switches* Boards	0.8 kg	1	0.8 kg	30%	1.0 kg
	0.8 kg	1	0.8 kg	30%	1.0 kg
Houskeeping DC-DC Converters* Boards Power/Shunt Control* Boards	1.0 kg	1	1.0 kg	30%	1.3 kg
	1.0 kg	1	1.0 kg	30%	1.3 kg
Battery Control Boards	0.8 kg	3	2.4 kg	30%	3.1 kg
Shielding	0.6 kg	1	0.6 kg	30%	0.8 kg
Propulsion		0	0.0 kg	0%	0.0 kg
Mechanical		5	22.2 kg	30%	28.9 k
Struc. & Mech.		4	18.0 kg	30%	23.4 k
Primary Structure	5.6 kg	1	5.6 kg	30%	7.3 kg
Secondary Structure	1.0 kg	1	1.0 kg	30%	1.3 kg
Probe Shell (0.5 m Dia Sphere, 5 mm Wall, Ti)	11.0 kg	1	11.0 kg	30%	14.3 kg
Integration Hardware	0.4 kg	1	0.4 kg	30%	0.5 kg
Cabling Harness	4.3 kg	1	4.3 kg	30%	5.5 kg

	CBE Mass Per Unit	# of Units	Current Basic Est.	%-Unc. (% of CBE)	Predicted Basic Est.
Telecom		3	2.9 kg	10%	3.2 kg
UHF Patch	0.2 kg	1	0.2 kg	20%	0.2 kg
Electra-Lite	2.7 kg	1	2.7 kg	10%	2.9 kg
Coax Cable, flex (120)	0.1 kg	1	0.1 kg	0%	0.1 kg
Thermal		148	4.9 kg	24%	6.1 kg
Multilayer Insulation (MLI)	0.5 kg	6	3.0 kg	30%	3.9 kg
Thermal Surfaces		6	0.1 kg	0%	0.1 kg
General	0.0 kg	6	0.1 kg	0%	0.1 kg
Thermal Conduction Control		101	0.2 kg	22%	0.3 kg
General	0.1 kg	1	0.1 kg	0%	0.1 kg
Isolation (G-10)	0.0 kg	100	0.2 kg	30%	0.2 kg
Temperature Sensors		25	0.5 kg	15%	0.6 kg
Thermistors	0.0 kg	25	0.5 kg	15%	0.6 kg
RHU's	0.1 kg	10	1.0 kg	15%	1.2 kg

	Mass		Cubaya	CBE+ Cont.
	Fraction		Subsys Cont. %	
Power Mode Duration (hours)	Fraction	Mass (kg)		(kg)
Payload on this Element				
Instruments	20/	9.2	15%	10.5
Payload Total	2% 2%	9.2 9.2	15%	10.5
Additional Elements Carried by this Element	2%	9.2	15%	10.5
Probe (Without Instruments)	30%	142.2	45%	205.9
Carried Elements Total	30%	142.2	45%	205.9
Spacecraft Bus	30%	142.2	45%	205.9
Attitude Control	2%	9,9	10%	10.9
Command & Data	2%	9.9	10%	10.9
Power	18%	86.8	30%	112.8
Mono-Propellant Hardware	9%	43.4	7%	46.3
Structures & Mechanisms	18%	87.3	30%	113.5
S/C-Side Adapter	2%	9.8	30%	12.8
Cabling	4%	19.4	30%	25.2
Telecom	6%	28.3	14%	32.2
Thermal	7%	32.6	27%	41.4
Bus Total		327.9	24%	406.9
Spacecraft Total (Dry)		479.2	30%	623.3
Subsystem Heritage Contingency		144.1		
System Contingency		64.5		
Spacecraft with Contingency		688		
Mono-Propellant	28%	269.3		
Spacecraft Total (Wet)		957		
Launch Mass		957		
Launch Vehicle Capability		1135	Atlas V 401	
Launch Vehicle Margin		177.8	16%	
JPL Design Principles Margin		49%		

Carrier-Relay Spacecraft Mass Summary

Carrier-Relay Spacecraft MEL

	CBE Mass	# of	Current	%-Unc.	Predicted
	Per Unit	Units	Basic Est.	(% of CBE)	Basic Est.
Launch Mass			748.6 kg	28%	957.5 kg
Launch Vehicle PLA			0.0 kg	30%	0.0 kg
Stack (w/ Wet Element)			748.6 kg	28%	957.5 kg
Useable Propellant			268.7 kg	0%	268.7 kg
Stack (w/ Dry Element)			479.8 kg	44%	688.7 kg
Car <u>ried Elements</u>			142.2 kg	45%	205.9 kg
Probe (Without Instruments)			142.2 kg	45%	205.9 kg
Dry Element			337.7 kg	43%	482.9 kg
Wet Element			606.4 kg	24%	751.6 kg
Useable Propellant			268.7 kg	0%	268.7 kg
System 1: Monoprop			268.7 kg	0%	268.7 kg
Dry Element			337.7 kg	43%	482.9 kg
System Contingency			64.8 kg	43 <i>%</i> 19%	402.3 Kg
Subsystem Heritage Contingency			80.4 kg	24%	
Payload			9.2 kg	15%	10.5 kg
Instruments		2	9.2 kg	15%	10.5 kg
Mass Spectrometer	8.0 kg	1	8.0 kg	15%	v
ASI	Ŭ	1	Ű	15%	9.2 kg
	1.2 kg	1	1.2 kg	24%	1.3 kg
Bus Attitude Control		22	328.5 kg	10%	407.5 kg
	0.1 kg	16.0	9.9 kg		10.9 kg
Sun Sensor 1	0.1 kg		0.9 kg	10%	1.0 kg
Star Tracker 1	3.4 kg	2.0	6.8 kg	10%	7.5 kg
IMU 1	0.8 kg	3.0	2.3 kg	10%	2.5 kg
Shielding:	0.0 kg	1.0	0.0 kg	0%	0.0 kg
Command & Data		12	10.3 kg	14%	11.8 kg
Processor: RAD750-Box Component	0.6 kg	2	1.1 kg	5%	1.2 kg
Memory: MOAB-Box component	0.3 kg	2	0.6 kg	17%	0.7 kg
Telecom_I_F: CAPI-Box component	0.3 kg	2	0.6 kg	17%	0.7 kg
Backplane: BRE Backplane/PCU-Box			0.6 kg	17%	0.7 kg
component	0.3 kg	2	Ű		
Chassis: BRE Chassis-Box component	2.9 kg	2	5.8 kg	17%	6.8 kg
Analog_I_F: MREU	0.8 kg	2	1.6 kg	6%	1.7 kg
Power		20	86.8 kg	30%	112.8 kg
No Solar Panels	0.0 kg	0	0.0 kg	30%	0.0 kg
Li-SOCI2 (Primary Battery)	0.0 kg	0	0.0 kg	30%	0.0 kg
Li-ION (Secondary Battery)	4.8 kg	3	14.4 kg	30%	18.8 kg
Thermal Battery (Thermal Battery)	0.0 kg	0	0.0 kg	30%	0.0 kg
Advanced Stirling (ASRG-850C)	24.0 kg	2	48.0 kg	30%	62.4 kg
Chassis	12.0 kg	1	12.0 kg	30%	15.6 kg
Array Segment Switches* Boards	0.8 kg	0	0.0 kg	30%	0.0 kg
Load Switches Boards	0.8 kg	2	1.6 kg	30%	2.1 kg
Thruster Drivers* Boards	0.8 kg	2	1.6 kg	30%	2.1 kg
Pyro Switches* Boards	0.8 kg	4	3.2 kg	30%	4.2 kg
Houskeeping DC-DC Converters* Boards	1.0 kg	2	2.0 kg	30%	2.6 kg
Power/Shunt Control* Boards	1.0 kg	2	2.0 kg	30%	2.6 kg
High Voltage Down Converter* Boards	20.0 kg	0	0.0 kg	30%	0.0 kg
Battery Control Boards	0.8 kg	0	0.0 kg	30%	0.0 kg
ARPS (Stirling) Controller* Boards	0.8 kg	0	0.0 kg	30%	0.0 kg
Diodes* Boards	0.8 kg	1	0.8 kg	30%	1.0 kg
	1.2 kg	1	1.2 kg	30%	1.5 kg

	CBE Mass Per Unit	# of Units	Current Basic Est.	%-Unc. (% of CBE)	Predicted Basic Est.
Propulsion		32	44.0 kg	7%	46.9 kg
System 1: Monoprop		32	44.0 kg	7%	46.9 kg
Hardware		32	43.4 kg	7%	46.3 kg
Gas Service Valve	0.2 kg	1	0.2 kg	2%	0.2 kg
Temp. Sensor	0.0 kg	1	0.0 kg	5%	0.0 kg
Liq. Service Valve	0.3 kg	1	0.3 kg	2%	0.3 kg
LP Transducer	0.3 kg	2	0.5 kg	2%	0.6 kg
Liq. Filter	0.5 kg	1	0.5 kg	2%	0.5 kg
LP Latch Valve	0.4 kg	2	0.7 kg	2%	0.7 kg
Temp. Sensor	0.0 kg	10	0.1 kg	5%	0.1 kg
Lines, Fittings, Misc.	1.8 kg	1	1.8 kg	50%	2.7 kg
Monoprop Main Engine	0.5 kg	4	2.1 kg	5%	2.2 kg
Monoprop Thrusters 1	0.3 kg	8	2.6 kg	5%	2.8 kg
Fuel Tanks	34.6 kg	1	34.6 kg	5%	36.3 kg
Mechanical		7	116.5 kg	30%	151.5 kg
Struc. & Mech.		5	87.3 kg	30%	113.5 kg
Primary Structure	63.0 kg	1	63.0 kg	30%	81.9 kg
Secondary Structure	6.5 kg	1	6.5 kg	30%	8.5 kg
Probe Separation Hardware	9.3 kg	1	9.3 kg	30%	12.1 kg
Probe Spin Table	4.1 kg	1	4.1 kg	30%	5.4 kg
Integration Hardware	4.4 kg	1	4.4 kg	30%	5.7 kg
Adapter, Spacecraft side	9.8 kg	1	9.8 kg	30%	12.8 kg
Cabling Harness	19.4 kg	1	19.4 kg	30%	25.2 kg
Telecom	19.4 Kg	37	28.3 kg	14%	32.2 kg
X/X-HGA 1.5m diam Parabolic	3.1 kg	1	3.1 kg	20%	3.7 kg
X-MGA (19dB) MER	0.6 kg	1	0.6 kg	10%	0.7 kg
X-LGA	0.5 kg	2	0.0 kg	10%	1.0 kg
UHF-MGA Patch Array	1.3 kg	1	1.3 kg	20%	
SDST X-up/X down	2.7 kg	2	5.4 kg	10%	1.5 kg 5.9 kg
Electra-Lite	Ű	1	<u> </u>	10%	-
	2.7 kg	2	2.7 kg	20%	2.9 kg
X-band TWTA, RF=25W	3.0 kg		6.0 kg	10%	7.2 kg
Hybrid Coupler	0.0 kg	1	0.0 kg		0.0 kg
Filter, low power	0.2 kg	1	0.2 kg	10%	0.2 kg
X-band Diplexer, high isolation	0.8 kg	2	1.6 kg	10%	1.8 kg
Waveguide Transfer Switch (WGTS)	0.4 kg	3	1.1 kg	10%	1.3 kg
Coax Transfer Switch (CXS)	0.1 kg	1	0.1 kg	10%	0.1 kg
Coax Cable, flex (190)	0.2 kg	8	1.3 kg	10%	1.4 kg
WR-112 WG, rigid (Al)	0.4 kg	9	3.9 kg	10%	4.3 kg
Coax Cable, flex (120)	0.1 kg	2	0.2 kg	10%	0.2 kg
Shielding		0	0.0 kg	0%	0.0 kg
Thermal		208	32.6 kg	27%	41.4 kg
Multilayer Insulation (MLI)	0.5 kg	29	14.5 kg	30%	18.9 kg
Thermal Surfaces		17	1.3 kg	30%	1.7 kg
General	0.1 kg	17	1.3 kg	30%	1.7 kg
Thermal Conduction Control		1	0.2 kg	30%	0.3 kg
General	0.2 kg	1	0.2 kg	30%	0.3 kg
Heaters		10	0.9 kg	30%	1.2 kg
Custom	0.1 kg	2	0.1 kg	30%	0.1 kg
Propulsion Tank Heaters	0.1 kg	2	0.2 kg	30%	0.3 kg
Propulsion Line Heaters	0.1 kg	6	0.6 kg	30%	0.8 kg
Temperature Sensors	-	100	1.0 kg	15%	1.2 kg

	CBE Mass Per Unit	# of Units	Current Basic Est.	%-Unc. (% of CBE)	Predicted Basic Est.
Thermostats		4	0.1 kg	15%	0.1 kg
Mechanical	0.0 kg	4	0.1 kg	15%	0.1 kg
Thermal Louvers	1.0 kg	2	2.0 kg	30%	2.5 kg
Heat Pipes		8	1.2 kg	0%	1.2 kg
Loop HP	0.2 kg	8	1.2 kg	0%	1.2 kg
RHU's	0.1 kg	30	3.0 kg	15%	3.5 kg
Instrument Thermal Control	0.0 kg	0	0.0 kg	0%	0.0 kg
Other Components		7	6.5 kg	30%	8.5 kg
Shunt Radiator	6.5 kg	1	6.5 kg	30%	8.5 kg
Prop Module MLI	0.0 kg	6	0.0 kg	30%	0.0 kg