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Was this uphill TD step
effectively geochemically

unassailable?

“Downhill”
geochemical path

Slow reduction from

—  CO, to CH, during

serpentinization
(a geochemical ‘siphon’)

Recast from Maden 2000
Biochem. J. 350, 609
Yung et al, 2010 J. Cosmol. 5, 1121

Reductions & hydrogenations—>




Abstract thermodynamics of a free energy converter:
- a generalized "Atwood machine"
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(S = klnW)
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2nd law: —
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Entropy is a measure of the number of particular microscopic arrangements of atoms
that appear indistinguishable from a macroscopic perspective. Ludwig Boltzmann

Branscomb & Russell, Biochim Biophys Acta, in press



The ATP synthase rotary engine
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Jiang et al. (2001) PNAS, 98, 4966-4971
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Weber & Senior (2003) FEBS, 544, 61-70



Box 2 | Rotary engines in the car and in the cell Wankel engine
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ATP synthase — a marvellous rotary engine of the cell.
Yoshida, M., Muneyuki, E. and Hisabori, T. 2001,
Nature Reviews, Molecular Cell Biology, 2, 669-677.
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Russell & Hall 2006 GSA Mem192, 1-32






Hadean water world with an atmosphere fed from volcanic
cO,~H,0>S80,>H,S~H,>N,>CO>NO>P,0,,
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ol Credit: Dylan Bocanegra




CO,~ H,0 > S0O,>>H,S ~ H,>N,>> CO >NO > P,0,,
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Autocatalytic mantle convection engine @ 4.4Ga
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Abstract thermodynamics of a free energy converter:
- a generalized "Atwood machine"

(S = kInW)

We
wa>wB5
Wb > we

2nd law:
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Entropy is a measure of the number of particular microscopic arrangements of atoms
that appear indistinguishable from a macroscopic perspective. Ludwig Boltzmann

Branscomb & Russell, Biochim Biophys Acta, in press



MODERATE TEMPERATURE HYDROTHERMAL CONVECTION

IS PARTLY DRIVEN BY A SERPENTINIZATION ENGINE
H, 1-10 bars CO,

uv
Ocean ——
2Fe(ll) + 2H*—> 2Fe(lll) + H,
=0 Envopic 41010 km
PH~5106 chemical free energy exhaust

pH and redox front

conversion machine

Ocean floor o Phosphate

Oceanic crust CO, Fe(lll)
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Descending Seawater _ ' /
seawater H, > CH,>>> 7 (FeS N Membranous froth
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CH, kinetically inhibited
0 o T 2 z
* o * € ¢
":0’ e’
Ad
100 “CH Co, * .
! disequilibrium &
:0:0‘ organic synthesis
o 200 "“‘ N - -
°C= | Log (fCO, = £CH,) -
~depth QFM 9 (f 2 f 4)
300 e, ® -
0‘0‘ C02
CH, metastable C-H-O |
400 :"“ " = = = = ®m ® .st;bie.c:H:o."
N
PR/
* PPM
500 ":’l' -
600 —/ — . .
2 0 -2 -4 -6 -8

Log # H,

Log fugacities of CO,/CH,
equilibrium

H, fugacity buffered by
QFM = SiO,+Fe,SiO,+Fe;0,
PPM = FeS,+FeS+Fe;0,
HM = Fe,0; + Fe;0,

PPM & HM comparable to
redox catalysts

Recast from Shock 1992
Orig. Life Evol. Biosph. 22, 67



co,

Credit: University of Washington




cO, + CH, » CH;COOH

Credit: University of Washington



Although it’ s too
hot,
too acidic,

too oxidized &

too spasmodic
for life to emerge at
400°C springs, they
do provide the trace
elements (Fe, Ni, Zn,
Mo, Co) that may be

sequestered by

metalloenzymes

Endeavor, NE Pacific
Credit: Delaney & Kelley




Early (hot) reductive acetyl-co-A pathway to waste
methane (based on Fuchs 1989, 2011)

CH,
ill
2H* + 26 Ni
ADP + P. oMSSCoB <_COMS(_‘_')SCOB
ATP H*

energy
Ni' ——>1 Ni"'-CH,

for cell
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{ Co'l-CH, ——===—3 CH,~SCoM

<
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2 [H] CoA(SH)
Ni(FeS)-directed—)@ AT» [~ COJ
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Ho CODH co

Grabarse et al. 2001, J Mol Biol 309, 315 &

Fuchs, G. 1989, in Autotrophic Bacteria 365 Cellular carbon
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Favored by higher H, and pH but
lower temperatures and

molybdenum pterin

Acetogenic path
— by addition of CO

COO

>

T CH, — CH

Single-pass reduction
pathway from CO, to CH,COO

(biochemical ‘vortex’)

Recast from Maden

2000, Biochem. J. 350, 609




Reductive acetyl-co-A pathway to acetate

CH,;COO- acetate waste

ATP energy
ADP
CH,COO0PO;*
H,folate
6 [H] + ATP HOPO,? "SCoA
Mo-directed%@ ALV [CH;— ]
" HO Co(FeS)P
? ACS CH,CO~SCoA
2 [H] CoA(SH)
Ni(FeS)-directed> @ AT» [~ CO]
H,o CODH + ATP from pmf

Fuchs, G. 1989, in Autotrophic Bacteria,

Schlegel & Bowien, WI, Science Tech. Cellular carbon







Phylogenetic tree of the
Complex Iron Sulfur Molybdenum enzymes
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A. Rapid injection of reactor effluent into ‘Hadean Ocean’ favors inorganic chimney growth
B. Slow injection rate favors inorganic bubbles and geodes

Both precipitates are a mixture of hydrosilicates, ferrous hydroxide and minor FeS (mackinawite)

Mielke et al. 2010 Astrobiology 10, 799-810




\’~

& ; e
B s i
% L N o
o > )
5 b5
N f.':};‘j; - . » T
S :
R
Acc¥. .Spot Magn Det WD ——— 2um

20.0 KVE8:0- 10000x GSE 10.2 8.8 Torr

pot Magn Det WD ———— 5m
W80\ 5000x GSE 10.70.4.0 Torr

alkaline flow

— = central divider, Fe(OH),/FeS - = = Steep gradients

acidic counterflow > framboids

Two-way transport

Y
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Large porous membrane structure prefigures the first biofilms?
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4.4Ga Acidic Ocean
~10°C pH ~5.5 acetate

“exhaust” HYDROTHERMAL MOUND
CO2 -1 = HATCHERY OF LIFE

H N

Biosynthesis

pH ~5.5
phate

|
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hitrate electron Electron bifurcation cluster

acceptor VI 0/2-
MoV, Fe, 8%
NO
- e =P TRV Ocean floor
H, TCH B Ocean crust

Serpentinization produces electron donors in alkaline hydrothermal fluid

A A~ A A A
Chemical free energy (disequilibria) derived from serpentinization

¢ @ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ Russell, Nitschke, Branscomb

. . . Trans R Soc London, in press
Physical free energy from the mantle convection engine



4.4Ga Acidic Ocean
~10°C

Inorganic membranes |
SiO,, Fe(Ni,Mo)S, green rust
N
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Serpentinization produces electron donors in alkaline hydrothermal fluid



Methane Monooxygenase

Green Rust
~[Fe'Fe''(OH),]*[OH]

103, 2385

’

Baik et al. Chem. Rev. 2003



Could mackinawite act as a proto-hydrogenase”?

H, < 2H" + 2e

Peters et al, Science 1998, 282:1853

McGlynn et al, 2009, Dalton Trans. 22, 4274 Composite structure of hydrogenase
from Clostridium & Desulfovibrio

Tard et al., 2005 Nature 433, 610



Greigite compared to acetyl co-A synthase (ACS)

Greigite [FecNiSg]

Volbeda and Fontecilla-Camps 2005,
Cordination Chemistry Reviews, 249,1609-19

AccV  Spot Magn = Det WD ——=——1" 100 um
200kv 3.0 200x GSE 104 39 Torr



The beginning of the peptide takeover?

Fe,S, “egg” bound to RLRLR nest (cf. a ferredoxin)

Milner-White & Russell 2008 Biology Direct, 3, 3




The ATP synthase rotary engine
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Jiang et al. (2001) PNAS, 98, 4966-4971
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Weber & Senior (2003) FEBS, 544, 61-70



membrane-embedded H*-translocating pyrophosphatase

Cytosol

PPi released

Vacuolar

lumen

Vacuolar
lumen

R state

M16 M16 M6

PPi binding

| state

M6 M16 M16 M6

Cytosol

Pi + Pi
L

Vacuolar
lumen

T state

Lin et al., 2012, Nature 484, 399-403



Fe(OH), = green rust as putative proto H*-pyrophosphatse

Acidulous oxidizing exterior o8,

e.g. nitrate

9

Fe2+ 9 Fe2+/3+

Green Rust
~[Fe'Fe"(OH),]*[OH]

Alkaline reduced interior
Arrhenius 2003 Helv. Chim. Acta, 86, 1569



ENGINE 2: MAKING PYROPHOSPHATE (PPi)

Carbonic ocean-

Double layer hydroxide:

e.g., green rust [Fe';Fe"'(OH),]*[CI-3H,0]
or

[Fe'Fe'(OH),]*[OH]

Membrane

Crystals and Life

Arrhenius 2003 Helvetica Chimica Acta, 86, 1569



LUCA and post-LUCA enzymes

all enzymes dealing with autotrophic substrates are metalloproteins
(except that for H,S) and most of these are pre-LUCA
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Nitschke and Russell, in prep.
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ENGINE 1: MAKING THE ACETYL GROUP

electrons above
— P edox equilibrium
.} electrons below
redox equilibrium

—— chemical conversion

Nitschke, Russell
Trans R Soc London, in press



Notional mechanism for prebiotic acetyl synthesis
on NigFeSs, in Fes membrane

cf. Qiu ef af Science 264, 817. & Turner ef af (in press}

(Ni,FeS) cluster

100 pmol
CHaSH + CO

\

40 pmol Hall (1998)

CHaCOSCHa + HT
acetyl thioester

Russell, Daia,

acetic acid
Hiber & Wachtershauser 1997 Science 276, 245



Acetyl-Coenzyme-A
Synthetase (ACS)
assembles:

-CH, +-CO => H,CCO-

as Ni? < Ni'

Volbeda & Fontecilla-Camps 2005
Coordin. Chem Rev. 249,1609



