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plasmic surface of the ring24. It is generally thought that
Foa associates with the outside surface of the Foc ring,
and that Fob2 associates with Foa and F1δ.

The Foc ring is a rotor. Rotation of both the γ-sub-
unit and the Foc ring by ATP has been shown by an
actin filament attached to the amino termini of Foc on
the immobilized ATP synthase8,25,26. However, rotation
was even observed for an enzyme with inactivated Fo,
which had lost the ability to transport protons, and it
turned out that subunit associations in Fo were
impaired by the detergents used8. In fact, all of the Fo-

with this, ∆µH+ alone is not enough to promote the
release of product ATP from ATP synthase or to drive
rotation of the γ-subunit; in both cases ADP and Pi are
required21–23.

The Foc ring is a rotor
Although the whole structure of the Fo part of ATP syn-
thase is not known, the crystal structure of F1Foc10 of the
yeast ATP synthase has shown that Foc-subunits are
arranged as a ring, and that the foot of the central shaft
γε lands on — but does not penetrate into — the cyto-

Figure 3 | The crystal structure of mitochondrial F1-ATPase. Side view (a) and view from the bottom (b) of the α3β3γ part of
bovine heart mitochondrial F1 (REF. 3). A coiled-coil structure of the γ-subunit penetrates the (αβ)3 cylinder. This structure
apparently embodies Boyer’s rotary catalysis hypothesis. c–e | Three conformations of β-subunits. The structure of the γ-subunit
is also shown. c | Closed (C) form. A β-subunit with bound AMP–PNP (βTP) is shown. β-subunit with bound ADP (βDP) and the α-
subunits are also in the closed form. d | Half-closed (C′ ) form. A β-subunit with bound ADP and sulphate (a mimic of phosphate)
is shown. e | Open (O) form. A β-subunit with an empty catalytic site (βE) is shown. The carboxy-terminal helix-rich domain of the
C′ and O forms of βs swing ~23° and ~30° outwards, respectively, from the centre of the molecule as a rigid body. The helices of
the domain are highlighted.

Side view Bottom view C′ (ADP+Pi)C (AMP–PNP) O (None)

a b c d e

Box 2 | Rotary engines in the car and in the cell

The F1 motor reminds us of the rotary combustion engine, which was invented by Felix Wankel in 1957 and was first
used in commercial cars by Mazda in 1967. The rotary engine is small, light, silent and simple because the engine can
directly convert the fuel energy into rotation of the rotor. It can drive the intake of the fuel gas, compression, ignition
and exhaust sequentially just by a simple rotation of the central rotor, which is quasi-triangular in shape (right panel).
The events occurring on one side of the rotor (green) are annotated.

The F1 also has a central rotor — the γ-subunit — and three reaction chambers (the catalytic β-subunits; left panels).
The events occurring in one β-subunit (light red) are annotated according to Boyer’s classic model. The basic
principles behind the functioning of these rotors — three reaction sites in turn doing each of three cyclic steps in a
120° phase difference to cause rotary motion — are remarkably similar.
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Hadean water world with an atmosphere fed from volcanic  
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Russell & Hall 2006 GSA Mem192, 1-32, after Holmes 1931 Trans Geol  Soc Glasgow  18,  559 
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br inging a previously dangling oxygen a tom into the
br idging posit ion and shor tening the Fe-Fe distance
slight ly (Figure 2). The system is thus poised to react
with dioxygen , the second major step in the overa ll
ca ta lyt ic cycle (Scheme 1). Proceeding through sev-

era l postu la ted or isola ted in termedia tes, the system
evolves to give the hydroxyla t ing, diiron(IV) species
Q. The ca ta lyt ic cycle completes with the th ird par t ,
in which the subst ra te methane is conver ted in to
methanol and Hox is restored after losing the second
oxygen atom as water released into the environment .

In th is review we focus on th is th ird leg of the
ca ta lyt ic cycle, limit ing our discussion pr imar ily to
the fina l hydroxyla t ion step. Extensive discussions
of the ear lier chemist ry can be found elsewhere.3-5
The range of exper imenta l methods ut ilized to

examine the hydroxylat ion mechanism is remarkably
broad. Spect roscopic studies using UV/vis,51,70,99
EPR,51,59,70-82,88 ENDOR/ESEEM,74,80-89 EXAFS,70,90-94
CD/MCD,95-98 and Mössbauer 70,73,74,99,100 t echniques
a t var ious stages of the ca ta lyt ic cycle have been
repor ted, and the resu lt s have been summar ized.3-5
In the past few years, subst ra te probes have been
used with increasing frequency to address whether
the react ion is concer ted or involves the format ion
of a radica l or a ca t ion ic in termedia te. In genera l,
such probes are substrates that are expected to report
on the radica l or ca t ion ic na ture of in termedia tes by
affording different products for different mechanist ic
pa thways. The product dist r ibu t ion can be used as
evidence to suppor t or elimina te one or the other
mechanist ic scenar io. In addit ion , the t ime sca le
required for a subst ra te in termedia te to rear range
and generate products is, in pr inciple, a powerful tool

Figure 1. (a ) X-ray crysta l st ructure of MMOH from Mc.
capsu latus (Ba th).31 The R subunit is colored red, the !
subunit blue, and the γ subunit green . Iron a toms are
shown as purple spheres. (b) Solu t ion st ructure of MMOB.
Flexible regions of N- and C-termin i a re not shown.60
(c) St ructure of MMOR. The solu t ion st ructure of the
[2Fe-2S] domain of MMOR63 is shown with a car toon
represent ing the FAD and NAD(H) binding domains. The
Fe and S atoms of the [2Fe-2S] cluster are shown as purple
and yellow spheres, respect ively. (Repr in ted with permis-
sion from ref 7. Copyr igh t 2002 Elsevier Science Ltd.)

Scheme 1

Figure 2. Act ive-site st ructures of (a ) MMOHox and (b)
MMOHred.31 Colors: gray, carbon; red, oxygen; blue, n it ro-
gen; orange, iron . (Repr in ted with permission from ref 7.
Copyr igh t 2002 Elsevier Science Ltd.)
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