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Critical need for coordination between
astronomy, planetary science, and
astrobiology

. Theorists must aim for hypothesis testing
with observations

eed to train scientists about our solar
system; composition is a dominant
parameter

NASA/J



The “metallicity” of the star is difficult to extrapolate to planets (but we have to
try)

TABLE 5

PuoTtosPHERIC Z/X 1IN ELEMENTAL
ABUNDANCE COMPILATIONS

Z/X Year  Reference
0.0270 .............. 1984 1
0.0267 .............. 1989 2
0.0245 .............. 1993 3
0.0244 .............. 1996 4
0.0229 .............. 1998 5
0.0208 .............. 2002 6
0.0177 ... 2003 7

REFERENCES—(1) Grevesse 1984; (2)
Anders & Grevesse 1989; (3) Grevesse &
Noels 1993; (4) Grevesse et al. 1996; (5)
Grevesse & Sauval 1998; (6) Grevesse &
Sauval 2002; (7) this work.

Lodders (2003)



Planets within a single system (ours) may have been built from material with a
wide range of compositions
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Earth starting with 100 ppm bulk water produces dense atm that collapses upon

cooling into global ocean 100s m deep
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plagioclase + clinopyroxene + orthopyroxene + olivine
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— 1. Metallic core

2.Lower silicate mantle — 1. Metallic core
— 3,Upper silicate mantle — 2.Lower silicate mantle
4.High pressure ices — 3.Upper silicate mantle

5.lcel/ Liquid water 5.1ce I/ Liquid water

Ocean Planet Earth-like planet

Sotin et al. (2007)



Kaltenegger, Henning, and Sasselov (2010)
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Figure 2: Case 1, thin layer (top). Case 2, thick
layer (bottom). No clouds. Relative flux. Model
emergent spectra 0.4 pm — 40 pm of a cloud-free
atmosphere for three volcanic SO, concentrations
(Black: No eruption. Red: 10x Pinatubo eruption
(baseline). Blue: 100x baseline). The calculations

are performed at very high resolution (0.1

25

10 | 15 I | 20
Wavelength (um)

wavenumbers) and subsequently smoothed

display (R = 150). Three sulfur dioxide features

become detectable in the 10x and 100x cases.



Compositions — silicate/metal, volatiles, oxidation

- Control oceans, atmospheres, and internal structure
- In turn influence surface temperature and magnetic field
- And control habitability



Theorists must aim for hypothesis testing
with observations

Need to train scientists about our solar
system

Critical need for coordination between
astronomy, planetary science, and
astrobiology

NASA/J
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Planets are built by giant impacts among differentiated bodies

Planets

Embryos

Planetesimals

Elkins-Tanton (2012) Ann.Rev.



