Whither Space Weather?

Presentation to the Committee on Solar and Space Physics March 4, 2014

> Dr. Ron Turner ANSER Fellow

Analytic Services Inc 5275 Leesburg Pike Suite N-5000 Falls Church, Virginia 22041

Space Weather has Matured

- Improved understanding of the underlying physics:
 - Advances in Space Physics modeling
 - Increased observational data to test and distinguish between models
 - Significant coordination/collaboration
- Improved forecasting/nowcasting
 - Availability of real-time/near-real-time data
 - Emergence of space weather forecasting "centers"
- Improved public understanding of space weather impacts
 - Significant outreach activities and new media outlets
 - NRC workshop report was widely distributed

Space Weather Has Emerged from a "Niche" Role

- Impacts were understood, but viewed as marginal
 - Communication satellite failures impacted daily lives...for a few hours to a few days
 - GPS accuracy degrades...sometimes, slightly, briefly
 - Local power grids failed...for a few hours
 - Satellite lifetimes were affected...but mitigated by design improvements and operational procedures
 - Astronauts radiation risk to health...but in ISS for nominal missions the exposure is well below limits and readily mitigated
- Until there was a focus on Space Weather's potential threat to the National Power Grid
 - Leading to inclusion in National Space Policy
 - Increased planning within DHS/FEMA
 - Increased attention within OSTP

We are in the Prime of Space Weather

- More real-time space-based observational data than ever
 - GOES/POES (work horses of NOAA SWPC)
 - Ace (still going...)
 - SDO (high resolution, full disk imaging, at incredible cadences)
 - Stereo (still producing "far side" images)
 - Van Allen Probes (formerly RBSP)
 - COSMIC

Continued availability of ground-based sources

- GONG
- SCINDA
- SEON
- Neutron Monitor
- GPS Receivers

Multiple sources of forecast and nowcast

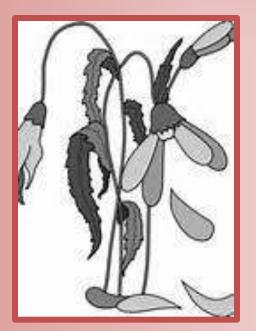
- NOAA SWPC (Nation's operational forecasts)
- NASA (supports NASA operations and provides test bed for emerging models)
- Commercial entities (tailored forecasting)
- Growing Community of Space Weather Users

But for How Long...?

- Budgets are not keeping up with expectations
 - "Flat is the new growth"
 - NSWP partners each have tremendous pressures just to maintain status quo
- Relatively quiet solar maximum
 - Fewer "reminders" of the impacts
 - Decreased number of operators with direct experience
 - Risk of complacency, even in the face of potentially more vulnerable systems
- Aging science platforms threaten loss of key observations
 - More use is made of real-time science platform observations
 - Lack of sustainable acquisition plan for operational platforms

Generalized Space Weather Observation Needs

- Monitor Solar Wind, other Plasma Properties, "upwind" of Earth
 - L1 (0.99 AU)
 - Further "upwind" (.90 to .95 AU)
- Monitor Magnetic Complexity of Solar Active Regions
 - East Limb: What is coming (L4)
 - Head on: What is facing the Earth (Earth Orbit, L1)
 - West Limb: Threat region for Solar Energetic Particles (L5)
- Characterize CMEs (velocity, extent) as they erupt
 - From East or West Limb (L4 or L5)
 - Head on: (least effective)
- Characterize Radiation and Plasma Properties in GEOSpace(Charging, total dose, SEU risks)
 - GEO
 - MEO
 - LEO
- Characterize State of Ionosphere (TEC, Scintillation)
 - High, Medium, Low latitudes


Identification of Future Users of Space Weather Forecasts

- Last decade has seen an explosion of interest in space weather
 - Increased reliance on GPS
 - Increased Polar Flights by Airlines
 - Need to monitor Power Grid vulnerability
 - Emergence of Commercial Space Tourism
- Will terrestrial solutions slow or reverse the trend?
 - Ground-based monitoring of GPS signals
 - Real-time monitoring of GIC
 - Engineering solutions to GIC
 - Redundant and Reconfigurable Communications Satellite Nodes

Looking Ahead

Wither Space Weather?

Or Thrive?

Meeting the challenge of maintaining a robust national space weather capability will not "just happen"... it requires coordinated advanced planning.

Possible Study Topics for CSSP

- Assess national—both civil and defense—needs for space weather information and forecast products
 - Evaluate against current and anticipated space weather capabilities (models and observations)
 - identify potential gaps (including needs for targeted space weather products)
 - provide options for a path forward
- Review the National Space Weather Program implementation
 plan
- Determine to what extent the nation's space weather science missions are contributing to the needs of space weather service providers
- Examine the space weather "climate" to characterize the space environment and provide information on the frequency and severity of hazardous space weather events

List derived from document prepared by Art Charo