

Space Life and Physical Sciences Status

D. Marshall Porterfield
Director, Space Life and Physical Sciences
Human Exploration & Operations Mission Directorate

October 7, 2014

- NASA's Space Life and Physical Sciences Research and Applications Division (SLPS) has been formulated to execute high quality, high value research and application activities in the areas of:
 - Space Biology
 - Physical Sciences
 - Human Research
- These programs conduct fundamental and applied research to advance basic knowledge and to support human exploration in the environment of space.
- Division serves as the agency liaison with the ISS National Laboratory management organization (CASSIS)

Response to the Decadal Survey: Perspectives and Approaches for Going Forward

- Chartered by Congress the National Academy of Science Commissioned a National Research Council decadal survey of NASA Life and Physical Sciences
- The Resulting report serves the SLPS Division in HEO as a guideline for developing applied and fundamental research that serves to promote the NASA human exploration mission
- Decadal recommendations serve the ultimate direction in prioritization of ISS research efforts coming from the SLPS Division at HQ
- NASA/SLPS is directly responsible back to the NAS/NRC and congress in how the recommendations are addressed.

Human Exploration and Operations Mission Directorate

General Counsel

Robin Frank

Legislative Affairs

Richard Irving

Devin Bryant

Public Affairs/Communications

Josh Buck, Stephanie Schierholz, Rachel Kraft

Associate Administrator for Human Exploration and Operations

Associate Administrator – ^sWilliam Gerstenmaier

Deputy Associate Administrator - Vacant

Deputy AA for Policy & Plans – ^sGreg Williams

Senior Technical Advisor – Michele Gates

Executive Assistant – Jeanette Covington

CA000

Chief Engineer

Jack Bullman

Chief Scientist

Dr. Gale Allen

Strategic Integration & Management Division

Director - ^sAlotta Taylor CI

Michelle Bascoe
Beth Beck
*Tonya Brown
Chris Burroughs
Scott Goodwin
*Beverly Hamilton
Dan Hamilton
Regina Hoover
Shera McNeill
Dawn Mercer
Kathy Nado
Alexander Pline

Shawanda Robinson
Craig Salvas
Jennifer Viudez (D@LARC)
Elsie Weigel
Jeff Fesler (C)
Mike Newell (C)
Carlyle Webb (C)

LaVerne Drayton (Sec)

Resources Management Office

Director – ^sToni Mumford CH

LaTasha Carson
**James Cassidy
Angelia Davis
**Marlana Dorman
Paula Dorsey
*Nancy Hammell
Brandy Henson
Denise Holley
Judy Jackson
Tudy Lau
**Renee Leck
**Sue Leibert
**David Lurie
**Darwina Marks
Winifred Martin

Stephen Morton
Jeffrey Rankin
Ronald Ray
Corali Roura
*Elaine Slaugh
Della Spears
Josh Turman
Christine Wagner (D@OPM)
Barbara Addie
Dawn Brooks
Robert Burdine
Madeline Butler
Margaret Caulfield
Susan Chang
Pat Eblen
Barry Geldzahler
Crystal Harper
William Horne
Brad Kaufman
Bill Marinelli
JJ Miller
Naseem Sayied
James Schier
Victor Sparrow (SL)

Leakesha McMillan (Sec)

Space Communications & Navigation Division

DAA – ^sBadri Younes

Assistant DAA – ^sPhillip Liebrecht CG

Barbara Addie
Dawn Brooks
Robert Burdine
Madeline Butler
Margaret Caulfield
Susan Chang
Pat Eblen
Barry Geldzahler
Crystal Harper
William Horne
Brad Kaufman
Bill Marinelli
JJ Miller
Naseem Sayied
James Schier
Victor Sparrow (SL)

Launch Services Office

Director – ^sJim Norman CF

Scott Chandler
Jeanie Hall
Anne Sweet

Darlene Fletcher (Sec)

Steve Simmons (C)
Irene Tzinis (C)
Stephanie Wan (C)
Lesha Zvosec (C-GRC)

Jennifer Chesshir (C-Sec)

Exploration Systems Development Division

DAA – ^sBill Hill

Assistant DAA - Vacant

Susan Curley
Ashley Edwards
Susan Fenn (D@GSFC)
Timothy Finkel
^sCristina Guidi
Garth Henning
Jason Jenkins
Jack Kelley
Patrick Kelly
Jonathan Krezel
Arlene Moore
Zachary Pirtle
Thomas Rathjen
Andrew Schain
Marcietta Washington
Jayleen Guttromson (D)
Bill Hartwell (D)

^sPaul McConaughay (D)
Michele O'Connell (D)
John Rigney (D)
Jose Roman (D)
Marshall Smith (D)
Eric Boulware (C)
Dean Bucher (C)
Michael Call (C)
Samina David (C)
Michael Graybill (C)
James Lynch (C)
Scott Martellini (C)
Mark Ogles (C)
Stefanie Payne (C)
Lisa Powell (C)
Patrick Rodjom (C)
Tracey Patel (Sec)

Human Spaceflight Capabilities Division

Director – ^sBenjamin Neumann CN

John Allen
Robert Clay
*Dan Hedin
Catrina Horton
Patrick Johnson
Renee Pullen
Richard Zwierko
^sRoger Simpson (RPT)
Russ Wertenberg (D-ARC)

LaVerne Drayton (Sec)

International Space Station Division

Director – ^sSam Scimemi CJ

Robyn Gaters
John Hinkle
Jacob Keaton
*Theresa Maxwell
Donna Shortz
Gwyn Smith
Ron Ticker
Monsi Roman (D)

Commercial Spaceflight Development Division

Director – ^sPhilip McAlister CP

Lee Pagel
Andrea Riley
Marc Timm

Darlene Fletcher (Sec)

Advanced Exploration Systems Division

Director – ^sJason Crusan CQ

Douglas Craig
Barry Epstein
Juli Farley
Victoria Friedensen
*John Guidi
Jitendra Joshi
Kathy Laurini (D@Neth)
Richard McGinnis
*Chris Moore
Louis Ostrach
Bette Siegel
Nantel Suzuki
John Warren
James Johnson (D)
Karl Becker (C)
Valerie Chabot (C)
Michael Ching (C)
Carol Galica (C)
Nicole Herrmann (C)
Eracenia Kennedy (Sec)

Space Life & Physical Sciences Research & Applications Division

Director – ^tMarshall Porterfield CR

ISS Nat'l Lab Mgt.

Brad Carpenter
Fran Chiaramonte
Stephen Davison
Bruce Hather
Mark Lee (SL)
*Angel Otero
David Tornko
Nicole Ray (D)
Dennis Bahena (C)
Amir Zeituni (C)
Victor Schneider (I@CHMO)

^s - SES
SL - Senior Level
* - Supervisor
** - Team Lead
C - Contractor
D - Detalee
N - NEX
I - IPA
U - Intern
Sec - Secretary

SPACE LIFE AND PHYSICAL SCIENCES (SLPS)

D. Marshall Porterfield, *Director*

Angel Otero, *Deputy Director & ISS POC*

Bradley Carpenter, *Chief Scientist & CASIS Liaison*

OFFICE OF THE CHIEF SCIENTIST

- **Ellen Stofan**
NASA Chief Scientist
- **Gale Allen**
NASA Deputy Chief Scientist

OFFICE OF THE CHIEF HEALTH AND MEDICAL OFFICER

RESOURCE MGMT OFFICE

- **Renee Leck**
RMO Lead Analyst
- **Judy Jackson**
Resource Analyst

PHYSICAL SCIENCES

- **Angel Otero**
Program Manager (acting)
- **Mark Lee**
Senior Program Scientist – Fundamental Physics
- **Fran Chiaramonte**
Program Scientist – Combustion Science, Fluid Physics, Complex Fluids, Materials Science

CASIS

ISSPO (JSC/OZ/OB)

HRP OFFICE (JSC/SA2)

- **William Paloski**
*(direct report to HEO AA)
HRP Manager*

SPACE BIOLOGY

- **Angel Otero**
Program Manager (acting)
- **Nicki Rayl**
GeneLab Program Executive
- **David Tomko**
Program Scientist
- **Amir Zeituni (c)**

HUMAN RESEARCH

- **Stephen Davison**
Human Research Program Executive
- **Bruce Hather**
Human Research Program Executive

Budget Historical Perspective

**B
P
R
E**

Biological
& Physical
Research
Enterprise

Current Environment President's FY05 Budget for BPRE

(\$ in millions)	FY2004	FY2005	FY2006	FY2007	FY2008	FY2009	Total
FY 2005 PBS	985	1049	950	938	941	944	5807
Biological Sciences Research	368	492	499	496	500	502	2857
Physical Sciences Research	357	300	220	210	210	210	1507
Research Partnerships & Flight Support	260	257	232	232	231	232	1444

Exploration Era Re-Alignment Timeline

OBPR: Office of Biological and Physical research; HSRT: Human Systems Research and Technology

ISS Re-alignment and Narrowing of R&T Focus

2002 OBPR ISS Portfolio

Total OBPR	<u>966</u>
Ground Research Investigations	809
Flight Research Investigations	157
Ground/Flight Ratio	5:1

2008 ISS Portfolio

Total	<u>285</u>
Ground Research Investigations	201
Flight Research Investigations	84
Ground/Flight Ratio	2.5:1

ISS R&T primary focus:

- *Biomedical*
- *Basic Physical Sciences*
- *Fundamental Biological Sciences*

Total
Investigations

ISS R&T primary focus :

- *Exploration Biomedical*
- *Exploration Technology Testing*
- *Non-exploration Research*

Historical Conclusions

- The Agency's decision in 2004 to focus it's resources into the Exploration Vision directed resources (\$\$) away from the traditional Microgravity Program efforts
- The organization responsible for directing, managing and more importantly, advocating for life and physical science research was ultimately disbanded
- Ground and flight grants were terminated in an abrupt manner in 2004 leaving many researchers and students in a dire situation
- Life and physical science research was placed in an organization focused mostly on engineering development activities, not research
- Funding for space biology and physical science became dependent on annual Congressional earmarks, making long term planning extremely difficult
- Until 2011 there was no high level organization responsible for directing, managing and advocating for life and physical science research
- In 2011, with the merger of ESMD and SOMD, the Space Life and Physical Science Research and Applications Division was created to direct, manage and advocate for life and physical science research across the Agency

PPBE 15 BPS Budget

CURRENT IN-GUIDE PMR BUDGET						
Center	Fiscal Years					
	FY14	FY15	FY16	FY17	FY18	FY19
Ames Research Center	\$12.668	\$13.158	\$13.976	\$14.105	\$14.105	\$14.105
Glenn Research Center	\$20.666	\$17.641	\$18.373	\$16.734	\$16.767	\$16.767
Jet Propulsion Laboratory	\$2.117	\$3.566	\$4.615	\$4.337	\$3.376	\$3.376
Kennedy Space Center	\$3.576	\$3.389	\$3.646	\$5.238	\$5.147	\$5.147
Marshall Space Flight Center	\$7.390	\$7.048	\$7.193	\$7.236	\$6.786	\$6.786
NASA Headquarters	\$10.874	\$12.519	\$12.114	\$12.020	\$13.489	\$13.489
(CASSIS)	\$15.000	\$15.000	\$15.000	\$15.000	\$15.000	\$15.000
Total In-Guide	\$72.291	\$72.321	\$74.917	\$74.670	\$74.670	\$74.670

*All center overguide requests are being funded within the BPS in-guide budget.

PPBE 15 HRP Budget

	(\$M)	FY14 IOP	CY (2015)	BY (2016)	BY + 1 (2017)	BY + 2 (2018)	BY + 3 (2019)	BY + 4 (2020)	Total
Human Research Program		\$146.7	\$158.5	\$161.0	\$161.8	\$161.7	\$161.7	\$163.3	\$1,114.8
Ames Research Center		\$10.2	\$9.6	\$9.4	\$9.6	\$10.1	\$10.1	\$10.6	\$69.7
Glenn Research Center		\$5.2	\$6.9	\$7.2	\$6.0	\$6.0	\$6.0	\$6.1	\$43.3
Johnson Space Center		\$105.8	\$114.9	\$117.1	\$123.8	\$140.8	\$140.7	\$141.8	\$884.8
Kennedy Space Center		\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$0.2	\$1.3
Langley Research Center		\$3.0	\$3.0	\$3.0	\$3.1	\$3.1	\$3.2	\$3.2	\$21.6
NASA Headquarters		\$0.9	\$1.1	\$1.5	\$1.5	\$1.5	\$1.6	\$1.4	\$9.4
NSBRI		\$21.6	\$22.9	\$22.6	\$17.6	\$0.0	\$0.0	\$0.0	\$84.7

Legend	
BPS Milestone	▼
Controlled Milestone	◆
ISSPO Milestone	◆
Trigger	▲

Milestone diagram

Complete

Incomplete

BPS/ISSPO Physical Sciences Strategic Development Schedule

		FY 2015				FY 2016				FY 2017				FY 2018				FY 2019				FY 2020							
Increment	ISS	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4				
Physical Sciences	FP 2 NRA	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63					
Open Source	materialsLAB	RFI				Ø 3 FSR				PSR																			
Fundamental Physics	CAL	Ø 2 FSR	◆ CDR			SIR	◆	◆	FFHAT	△	◆	◆	FHA	TBD															
	QTEST			▼	Phase A Study																								
	ACES		PFU Tested			▼	MWL Delivery																						
Materials Science	GEDS (German)	PFU Integrated	▼	△		FHA	▼	SpX-9																					
	CdTe (Su)	PFU Integrated	▼	△	PFU Tested			FHA ▽	▼	SpX-12																			
	ICEAGE (Voiz)	PFU Integrated	▼	△	PFU Tested		FHA ▽	▼	SpX-11																				
	CETSOL (Beckerman)							▼	FHA																				
	SETA (Napolitano)																												
	MICAST (Poirier)																												
	FOG (Swenson)																												
	FAMIS (Hoffman)	PSR																											
Biophysics	CSLM-4	▼	△	SpX-5																									
	MMB-B	CL				SCR	▼		FDSRD	△	▽	RDR				CL	△	PDR/CDR			CL	△	TBD						
	MMB-MB		PSR/FHA				SpX-10			SpX-12																			
Fluid Physics	ZBOT	◇	CL	△			SpX-7																						
	ZBOT-2	Ø 3 FSR																											
	ZBOT-3	FFHAT																											
	PBRE	Ø 3 FSR	◆	△	PSR/FHA		SpX-8																						
	TPFSE					PDR	△	RR																					
	FBCE		CL	△	Ø 0/1 FSR		Ø 2 FSR		CL	△	CDR										CL	△	CDR						
	MFHT		DSRD	△	▽	SCR																							
Combustion Science	EHD					PSR/FHA															CL	△	PDR			CL	△	CDR	
	CPI		CL	△	CDR			SpX-9																					
	ACME	FDSRD	Ø 3 FSR	◆	◇			SpX-10													CL	△	CDR						
	SoFIE		△	▽	RDR			PSR/FHA		△	PDR					CL	△	CDR			CL	△	VRR	CL	△	PSR/FHA	TBD		
Complex Fluids	ACE-M	PSR/FHA			SpX-8		CL																						
	ACE-H	▼	△	SpX-5	SpX-6	PSR/FHA																							
	ACE-T	▼	△	PDR	CDR	△	SpX-8	SpX-10		SpX-11		TBD	TBD			CL	△	PDR/CDR			PSR/FHA								
	ACE-E	CL	△	CL		CL	△	▽	SCR							CL	△	TBD			CL	△	TBD						
	OASIS	▼			Orb-4	DSRD																							
	LCN	PSR/FHA					DSRD	△	▽	SCR						CL	△	RDR/PDR			CL	△	CDR			PSR		TBD	
ISS Facilities	IPSU-G				◆	FUA																							
	LMM Enhancements		CL	△	CDR		Ø 2 FSR	◆	◇	FHA	TBD																		

Signature: _____

Signature: _____

Signature: _____

Signature: _____

Signature: _____

Signature: _____

Base Response to Decadal Survey

= \$150 M/yr

- Mouse Centrifuge
- Life Beyond LEO
- Research for Bioregenerative Life Support
- 2nd payload/yr for cell science
- Mouse Centrifuge payloads, Granular materials program
- 100% of budget for Science Capability Development
- Fully fund SISSEC (Int.) Optical Clock project

Open Source Initial Capability

≈ \$120 M/yr

- ISS campaigns (incl. GeneLAB & Microbial Observatory) in place
- Twice annual NRAs
- Informatics Databases in place for PS and SB
- 50% of full budget for Science Capability Development
- Fully fund “Open Source” LAB Facilities for PS and SB.
- Fully fund QTEST (International); Phase A study SISSEC.
- Initiate Biophysics cross-discipline experiments

PPBE15 Program (Post MOA)

≈ \$73 M/yr

- 2nd payload/yr for rodents a possibility, pilot OS projects started
- Annual NRAs
- Partial funding for Science Capability Development
- GeneLAB, Microbial Observatory concepts initiated
- Cold Atom Lab implementation started
- Re-engaging community through working groups to kick start Open Source Science campaigns
- Much better posture to maintain hwde commitments to ISS

PPBE14 Program

≈ \$73 M/yr

- Intermittent Annual NRAs
- Limited ISS payloads for rodents, plants, cells, and flies
- 2 Nano and 2 Bion missions
- No GeneLAB, Microbial Observatory, Open Source Science
- Limited to no ability to maintain hardware delivery schedules

Issues/ Concerns moving forward

- Funding for research continues to be a constraint, still nowhere near an adequate response to the Decadal Survey recommendations
- Developing a ground research capability is still an area of concern. A spaceflight program needs a sound ground research base to be successful
- Need ISS to continue to deliver the MOA agreement content
- ISS to address some of the additional requests made by the centers and SLPSRA to be able to maximize our research opportunities
- Research facilities on ISS are limited, need additional facilities to be able to deliver our research. Additional Glovebox, Rodent Research Centrifuge are some examples
- CASIS is a new endeavor, learning how to deal with this new paradigm

Open Science Summary

- Open Science is a paradigm shift away from the traditional approach of enabling science for one specific Principal Investigator (PI) at a time.
- Open Science allows us to enhance science returns by developing high-content science community reference experiments (flight data for advanced modeling, analysis, and discovery) which will later support large numbers of investigators to conduct ISS derived research— NASA funds NRA to encourage translation of ISS derived research to multiply discovery and enable exploration and commercialization
- Our vision is to implement Open Science initiatives across the whole program.

Initial Pathfinders:

- GeneLab (Space Biology)
- MaterialsLab (Physical Sciences)
- Physical Science Informatics (PSI)

- Implementation of these pathfinders is bound by our budget

Open Science is paradigm-shifting for NASA

Open Science shifts selection, implementation and dissemination of space sciences research and data

Traditional Approach	Open Science Approach	Impact
NRA process to select 1 PI = 1 focused experiment	Open Science experiments defined based on science community inputs and Decadal Survey (systems approach). Science Definition Teams formed (not a single PI) to define reference experiments.	Increases data generated from every mission PLUS the systems approach yields data with relevance to the broader community
PI leads experiment with integration and operations support	Science Definition Team standardizes procedures and operations to conduct extensive high-content sample analysis of broad interest.	Generates data of interest to traditional and non traditional spaceflight research communities: CASIS, commercial, scientific, international
PI chooses where to publish. Data is released publicly when PI publishes	All data is released publicly in searchable informatics system/database , a linkable system with collaboration and analysis tools built in. NRA funds many investigations to translate ISS data into knowledge	Creates a integrated database for spaceflight data to increase collaboration and amplify impact of research to greatly increase science return from ISS and other flights

Value of Open Science for NASA Missions and Earth-based Applications

- **Traditional Space Science Community:** NASA researchers and PIs will use GeneLab, MaterialsLab, and PSI to study and understand the fundamental scientific principles in space address the high priority recommendations of the NRC Decadal Survey
- **NASA Human Research Program:** geneLAB is a potential host for One Year Twins Study Data – Pilot Study for Human Omics Data. HRP researchers will use geneLAB to help close gaps in knowledge related to the risks to human health in space, and help develop more effective countermeasures to ameliorate the detrimental effects of spaceflight on human health and performance.
- **CASIS Commercial Utilization of Space:** Open Science tools provide an opportunity for data mining to identify commercial targets for drug development, personalized medicine, materials engineering, and translational sciences.
- **Non-Traditional Space Research Communities:** Open Science data and informatics will benefit commercial interests wherever those Earth-based research can be influenced at the molecular scale by gravity. Broader technical spinoffs include the advancement of the multi-channel omics approach of GeneLab. Open Science will demonstrate analytics and data processing possibilities that have broader value and benefit beyond the analysis of spaceflight data alone.
- **The General Public:** anyone with internet access and interest can access geneLAB data and freely explore Space Biology and ISS research results for themselves.

Biological & Physical Sciences (BPS) Status

SLPS Gravity-Dependent Physical Sciences Research

Biophysics

- Biological macromolecules
- Biomaterials
- Biological physics
- Fluids for Biology

Combustion Science

- Spacecraft fire safety
- Droplets
- Gaseous – Premixed and Non-Premixed
- Solid Fuels
- Supercritical reacting fluids

Fluid Physics

- Adiabatic two-phase flow
- Boiling, Condensation
- Capillary Flow
- Interfacial phenomena
- Cryogenics

Materials Science

- Metals
- Semiconductors
- Polymers
- Glasses, Ceramics
- Granular Materials
- Composites
- Organics

Fundamental Physics

- Space Optical/Atomic Clocks
- Quantum test of Equivalence Principle
- Cold atom physics
- Critical point phenomena
- Dusty plasmas

Complex Fluids

- Colloids
- Liquid crystals
- Foams
- Gels
- Granular flows

CAL1 5 Flight Investigations and Minor Facility Modifications Needed by Nobel-Laureate PIs

- Zero-G Studies of Few and Many Body Physics (PI E. Cornell)
 - How complexity of the universe evolves from subatomic scale
 - Incorporation of Potassium 39 and a fast tuning magnetic field into CAL instrument
- Atom interferometry will pave the way for definitive space-based tests of Einstein's Theory of General Relativity (PI N. Bigelow, Co-PI W. Ketterle, Co-I W. Phillips)
 - Holy grail of theoretical physics probing deep into Planck-scale physics
 - Incorporation of Bragg scattering beam for two species atom interferometry

- Microgravity dynamics of bubble-geometry Bose-Einstein condensates (PI Nathan Lundblad)
- Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment (PI Jason Williams)
- Development of Atom Interferometry Experiments for the International Space Station's Cold Atom Laboratory (PI Cass Sackett)

CAL's Place in Probing Space-time Structures

*"Constraining the Energy-Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms", Giovanni Amelino-Camelia, Claus Lammerzahl, Flavio Mercati, and Guglielmo M. Tino, PHYSICAL REVIEW LETTERS, 103, 21 OCTOBER 2009

A New Generation of Materials Science Experiments onboard ISS

Purpose: Engineers & scientists identify most promising engineering-driven ISS materials science experiments

Goal: Seek needed higher-performing materials by understanding materials behavior in microgravity

Open Research and Informatics: Inspire new areas of research, enhance discovery and multiply innovation

Engineering-Driven Science

Partners:
Industry
Academic institutions
DOD
Other Government agencies
International partners
NASA
CASIS

materiaLab Workshop: Registered Attendees' Organizations

Commercial Entities

Alcoa
ASM International
Astrium North America
BNIM
Boston Electrometallurgical Inc
Brimrose
Caterpillar
Consultant
CST
DQX Company Metallurgist & PMI, LLC
DS SolidWorks
Ford Motor Company
GEOCENT
Made in Space
Materials Development, Inc.
Power Systems Manufacturing
RightDirection Technology Solutions
Sierra Nevada Corporation
Southern Research Assoc
SpaceX
Techshot, Inc.
Teledyne Brown Engineering
ZIN Technologies, Inc.

Academic Institutions

Alfred University
Alfred University/Kazuo Inamori School of Engineering
Auburn University
Austin Peay State University
Carnegie Mellon University
Clarion University
Cleveland State University
Dartmouth College
Georgia Institute of Technology
Harvard Medical School -- Brigham and Women's Hospital --
MIT
Iowa State University
IRDFProject Harvard / Columbia

Louisiana State University

Northwestern University, Evanston

Oregon State University

Pennsylvania State University

Purdue University

South Dakota School of Mines & Tech.

South Dakota State University

Stony Brook University

Texas A&M University

The Catholic University of America

The George Washington University

The University of South Dakota

Tufts College Inc

University of Alabama

University of Alabama at Birmingham

University Of Alabama, Huntsville

University of California, Davis

University of Central Florida

University of Colorado

University of Colorado, Boulder

University of Delaware

University of Houston

University of Houston, Center for Advanced Materials,

University of Illinois at Urbana-Champaign

University of Iowa, Iowa City

University of Kentucky

University of Maryland, Baltimore County

University of Massachusetts

University of Massachusetts Lowell

University Of Massachusetts, Amherst

University of Michigan

University of Minnesota

University of Puerto Rico at Río Piedras

University of Texas at Austin

University of the District of Columbia

University of Washington

Wayne State University

University of New Mexico/AFRL

Military

Army Research Laboratory (ARL) / Materials & Manufacturing Science Division
U.S. Army Research Laboratory
US Army
US Army TARDEC

Other Government Agencies

Federal Housing Authority
NIST
Office of Science and Technology Policy, Executive Office of the President

Foreign Entities

European Space Agency
CNES
NUI
Tanzania Commission Science & Tech

NASA and Affiliated Entities

CASIS
NASA/ARC
NASA/GRC
NASA/GSFC
NASA/HQ
NASA ISS Program Science Office
NASA/JPL
NASA/JSC
NASA/JSC/White Sands Test Facility
NASA/KSC
NASA/LaRC
NASA LaRC/National Institute of Aerospace
NASA/MSFC
NRESS

Goals of Materials Genome Initiative for Global Competitiveness and how MaterialsLab contributes

Goal:

To accelerate the pace of discovery, development, and deployment of advanced materials in US manufactured goods.

*Components:

1. Enhanced fundamental understanding of materials
2. New measurement methods for characterizing materials (new data and standards)
3. Improved data and enhanced (open) databases
4. New computational tools for materials science
5. Software development

Result:

US manufacturers take advantage of advanced materials to make their products more competitive because the process of discovery, development, design, and deployment of these materials is faster, less expensive, and more predictable

* **MaterialsLab** will contribute to items 1, 2 and 3.

Space Biology Highlights

2013 NRA Selections Announced

- 96 proposals received, 26 proposals selected for flight definition
- Total potential value of \$11.7M

Rodent Research has three missions in planning

- RR-1 planned for launch on SpX-4 this month – first rodents on a Dragon flight
- RR is the largest single user of crew time on ISS – between 100 and 200 hours per increment pair

Veggie Restarts Life Support Technology

- Veggie clearly demonstrated feasibility and interest in growing food on orbit
- HRP now involved to assess safety and palatability

2013 Space Biology NRA Timeline

- NRA Issued: November 15, 2013
- Step-1 Proposals Due: December 19, 2013
- Step-2 Proposals Due: March 20, 2014
- Peer Review: April-May 2014
- Technical Review: May-July, 2014
- Selection For Definition Review: August 11, 2014 (Note: Proposals are recommended today for a 6-18 month Definition Study in which the centers and proposers study experiment maturity, implementation feasibility/risks and costs. Budgets in the proposals are notional and may change during definition. Definition studies may result in a recommendation to not propose the experiment for flight, or to modify details of its implementation plan or budget. All budgets will be within the limits defined in the NRA. After definition is complete the centers will bring appropriate proposals forward to the Selecting Official to be considered for "Selection for Flight".)

Space Biology Research Areas

From Section B in the solicitation:

- B.1 - Mechanisms of Mammalian Adaptation to Long-term Spaceflight and Re-adaptation On Return to Earth:** proposals are requested to study the effects of long-term spaceflight exposure on female mice.
- B.2 - Mammalian Cell, Tissue and Organ Generation and Degeneration in Space:** studies are requested that use cell cultures from human or other mammalian model organisms to study changes in fundamental cellular processes under microgravity conditions.
- B.3 - Multigenerational and Developmental Biology of Invertebrates:** studies are requested that use small invertebrate model organisms to study processes of reproduction, development, aging and multigenerational adaptation to life in space.
- B.4 - Plant and microbial growth and physiological responses to the multiple stimuli encountered in space flight environments:** proposals will characterize how plant, invertebrate, and microbial growth and physiological responses are affected by a microgravity/space environment.
- B.5 - Experiments demonstrating the roles of microbial-plant systems in long-term life support systems:** flight experiment proposals are requested that explore the basic biological changes in spaceflight that will affect the potential for the use of plant, invertebrate and microbial systems in long term Bioregenerative Life Support Systems.
- B.6 - Long-term, multigenerational studies of microbial population dynamics:** experiments are requested for multigenerational studies of physiological, genetic, metabolomic, and reproductive characteristics of microbial, invertebrate, and plant populations onboard the ISS.
- B.7 - Special topic - ISS Rodent Tissue Sharing Opportunity:** two prime experiments selected from the recent NRA **NNH12ZTT001N** will be conducted with mice on the ISS (Space X6). All tissues from both experimental and control animals (other than blood, spleen & control mice brains) will be available for experiments proposed by investigators whose studies address at least one of the relevant high priority recommendations of the Decadal Survey.
- B.8 - Special Topic - Space Biology Investigations Using Nanoracks Cubelab ISS Flight Hardware:** NASA encourages the submission of proposals for Space Biology research emphases described in sections B.2, B.3, B.4 B.5 or B.6 that utilize the Nanoracks Cubelab facility, currently aboard ISS.

Space Biology Statistics by Subject Area

	NUMBER RECEIVED	NUMBER 70 &>	TOTAL IN PANEL	% PASSED IN PANEL
SpaceFlight Proposals	92	49		
PANEL				
Musculoskeletal		6	15	40
Microbiology		12	18	67
Immunology		8	13	52
Plant Biology		10	21	48
Neuroscience		4	6	67
Developmental Biology		8	17	40
Mail Reviews		1	2	50
TOTAL		49	92	53

Space Biology Selection STATISTICS

TYPE OF PROPOSAL	NEW TO SB	FORMER	INTRAMURAL	EXTRAMURAL
TOTAL # OF PROPOSALS = 92	69 (75%)	23 (25%)	16 (17%)	76 (82%)
TOTAL # PASSED PEER REVIEW = 49	32 (65%)	17 (35%)	11 (22%)	38 (68%)
TOTAL SELECTED FOR DEFINITION = 26	16 (62%)	10 (38%)	5 (19%)	21 (81%)

Rodent Research

Veggie merges plant science and life support technology

Commander Steve Swanson takes a moment to pose with the red romaine lettuce he just harvested, 6/10/14

Strategic Plan

National Aeronautics and Space Administration

geneLAB

Expanding the Impact of Biological Research in Space

www.nasa.gov Proprietary - For NASA Internal Use Only

**High Fidelity Draft
shared with ISLSWG
geneLAB representatives
in June 2014**

**Now signed and
approved now awaiting
public release**

The Expressome as the “Telescope for Life Sciences”

High Content Screening: A Platform for High Density/High Throughput Life Science Utilization of ISS

- Transcriptome
 - mRNA transcription
- Proteome
 - Protein expression
 - Intron/exon editing
- Protein activity control
 - Signaling
 - Phosphorylation
 - Nitrosylation
- Metabolome
 - Substrates, intermediates, and products for enzyme pathways
- Epigenome
 - Changes in DNA and histone chemistry

Transcriptome
Proteome
Metabolome
+ Epigenome

= Expressome

Human Research Program

- HRP Risk Reduction Model
- One-Year Mission
- Twins Study & Genomics

Human Research Program

Integrated Path to Risk Reduction, Revision B PCN-1 (2014)

Uncontrolled
Partially Controlled
Controlled
Optimized
Insufficient Data

Assumptions:

- 450 crew hrs/increment
- 6 crew/increment
- 6 month missions

Updated
06/16/14
Rev B PCN-1
HRPCB-approved

Human Health Countermeasures

Path to Risk Reduction - VIIP

MHRPE 1-Year Mission (1YM) Update

Multilateral biomedical investigations on US and Russian crewmembers

2012:

- Agency-level bilateral agreement
- Candidate investigation lists exchanged

2013:

- Bi-monthly meetings at IBMP
- Developed milestones, overarching principles for hardware, data, subject sharing
- Field Test experiment (US, Russian co-PI's) initiated, transitioned to operations
- Fluid Shifts experiment (US, Russian co-PI's) initiated; implementation issues
- Identified complementary ESA, JAXA investigations (thus “multilateral”)
- Initiated multi-step crewmember informed consent process

2014:

- Completed informed consent for for both crewmembers
- Sponsored Joint PI meetings to establish collaborations and data exchange needs
- Fluid Shifts experiment formally added to Russian science program (see box below)
- Crew time oversubscribed (both US and Russian)
 - Majority of investigations “below the line”
 - Nearly-full implementation expected with further timeline refinement

Fluid Shifts Experiment

- Endorsed by Roscosmos
- Approved by KNTS (Roscosmos-RAS committee: V. Solovyev, chair; A. Markov dep.)
- Energiya to assess feasibility, provide recommendation

Note: used one-off ad hoc process – slow-going on developing truly joint process for fully-integrated US-Russian investigations

NASA Twins Study Progress Update

Differential Effects on Homozygous Twin Astronauts Associated with Differences in Exposure to Spaceflight Factors

Jul 2013: Solicitation released

Sep 2013: 40 proposals received

Jan 2014: Peer review panels met
- Sleep, Metabolism, Microbiome
- Omics, Epigenetics, Chromosomes
- Cardiovascular

Mar 2014: 10 proposals selected

Apr 2014: First IWG Meeting held

May 2014: Received IRB approval (contingent*)

July 2014: Received HRMRB approval (contingent*)

Current: Detailed planning integrating all investigators into one combined study

Oct 2014: Planned collection of first samples

***HRP is working with OCHMO, CHS, NASA legal, CB, and the IRB to develop a policy that will protect all human spaceflight research subjects volunteering for genetic studies:**

- Aspects of risk unique to astronauts
- Provision of genetic counseling
- Permitted degrees of sharing genomic data
- Medically actionable findings and relation to medical records
- Research subject approval of public presentations and publications
- Disposition of samples remaining after the conclusion of an investigation
- Retention of data after the conclusion of an investigation
- Extension of Privacy Act protections after the subject is deceased

Conclusions

- SLPS is poised to move forward into this new exciting era of growth for our research program
- We look forward to continue to work with the ISSPO to implement the MOA and continue to look for ways to maximize our available resources
- SLPS is moving forward with the Open Science research management approach (GeneLAB, materialsLAB)
- We continue to work at HQ and DC to look for ways to identify ways to grow our program