Space Life and Physical Sciences Status

D. Marshall Porterfield
Director, Space Life and Physical Sciences
Human Exploration & Operations Mission Directorate

October 7, 2014
• NASA's Space Life and Physical Sciences Research and Applications Division (SLPS) has been formulated to execute high quality, high value research and application activities in the areas of:
 – Space Biology
 – Physical Sciences
 – Human Research

• These programs conduct fundamental and applied research to advance basic knowledge and to support human exploration in the environment of space.

• Division serves as the agency liaison with the ISS National Laboratory management organization (CASIS)
Response to the Decadal Survey: Perspectives and Approaches for Going Forward

- Chartered by Congress the National Academy of Science Commissioned a National Research Council decadal survey of NASA Life and Physical Sciences

- The Resulting report serves the SLPS Division in HEO as a guideline for developing applied and fundamental research that serves to promote the NASA human exploration mission

- Decadal recommendations serve the ultimate direction in prioritization of ISS research efforts coming from the SLPS Division at HQ

- NASA/SLPS is directly responsible back to the NAS/NRC and congress in how the recommendations are addressed.
Budget Historical Perspective

Current Environment
President’s FY05 Budget for BPRE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2005 PBS</td>
<td>985</td>
<td>1049</td>
<td>950</td>
<td>938</td>
<td>941</td>
<td>944</td>
<td>5807</td>
</tr>
<tr>
<td>Biological Sciences Research</td>
<td>368</td>
<td>492</td>
<td>499</td>
<td>496</td>
<td>500</td>
<td>502</td>
<td>2857</td>
</tr>
<tr>
<td>Physical Sciences Research</td>
<td>357</td>
<td>300</td>
<td>220</td>
<td>210</td>
<td>210</td>
<td>210</td>
<td>1507</td>
</tr>
</tbody>
</table>
Exploration Era Re-Alignment Timeline

OBPR RE-ALIGNMENT

VSE 14 JANUARY 2004

OBPR-ESMD INTEGRATION 1 AUGUST 2004
CREATION OF HSRT

REDUCTION IN NON-EXPLORATION RESEARCH ELEMENTS IN OBPR PORTFOLIO. ELIMINATION OF FUNDAMENTAL:
- Fluid Physics
- Combustion
- Materials Science
- Macromolecular Biotechnology (PCG)
- Physics (LTMPF)
- Reduction in ISS research utilization (MUSS)

JUNE 25, 2004 Op Plan Change

ZBR

HSRT ZBR RESULTS 26 JANUARY 2005

OMB/HILL BRIEFCINGS ON ZBR RESULTS

REDUCTION IN ANIMAL AND CELL BIOTECHNOLOGY RESEARCH ELEMENTS. FURTHER REDUCTION IN:
- Fluid Physics
- Combustion
- Materials Science
- Atomic Physics (Atomic Clock)
- Reduction in ISS research utilization (MUSS)

MAY 10, 2005 Op Plan Change

ESAS SEPTEMBER 2005

NARROWING OF R&T FOCUS TO FIRST 2 STAGES

OBPR: Office of Biological and Physical research; HSRT: Human Systems Research and Technology
ISS Re-alignment and Narrowing of R&T Focus

2002 OBPR ISS Portfolio

<table>
<thead>
<tr>
<th>Total OBPR</th>
<th>966</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Research Investigations</td>
<td>809</td>
</tr>
<tr>
<td>Flight Research Investigations</td>
<td>157</td>
</tr>
<tr>
<td>Ground/Flight Ratio</td>
<td>5:1</td>
</tr>
</tbody>
</table>

ISS R&T primary focus:
• Biomedical
• Basic Physical Sciences
• Fundamental Biological Sciences

2008 ISS Portfolio

<table>
<thead>
<tr>
<th>Total</th>
<th>285</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Research Investigations</td>
<td>201</td>
</tr>
<tr>
<td>Flight Research Investigations</td>
<td>84</td>
</tr>
<tr>
<td>Ground/Flight Ratio</td>
<td>2.5:1</td>
</tr>
</tbody>
</table>

ISS R&T primary focus:
• Exploration Biomedical
• Exploration Technology Testing
• Non-exploration Research

Data from taskbooks: http://taskbook.nasaprs.com/Publication/welcome.cfm
Historical Conclusions

• The Agency’s decision in 2004 to focus its resources into the Exploration Vision directed resources ($$) away from the traditional Microgravity Program efforts

• The organization responsible for directing, managing and more importantly, advocating for life and physical science research was ultimately disbanded

• Ground and flight grants were terminated in an abrupt manner in 2004 leaving many researchers and students in a dire situation

• Life and physical science research was placed in an organization focused mostly on engineering development activities, not research

• Funding for space biology and physical science became dependent on annual Congressional earmarks, making long term planning extremely difficult

• Until 2011 there was no high level organization responsible for directing, managing and advocating for life and physical science research

• In 2011, with the merger of ESMD and SOMD, the Space Life and Physical Science Research and Applications Division was created to direct, manage and advocate for life and physical science research across the Agency
CURRENT IN-GUIDE PMR BUDGET

<table>
<thead>
<tr>
<th>Center</th>
<th>Fiscal Years</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY14</td>
<td>FY15</td>
<td>FY16</td>
<td>FY17</td>
<td>FY18</td>
<td>FY19</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>$2.117</td>
<td>$3.566</td>
<td>$4.615</td>
<td>$4.337</td>
<td>$3.376</td>
<td>$3.376</td>
</tr>
<tr>
<td>Kennedy Space Center</td>
<td>$3.576</td>
<td>$3.389</td>
<td>$3.646</td>
<td>$5.238</td>
<td>$5.147</td>
<td>$5.147</td>
</tr>
<tr>
<td>(CASIS)</td>
<td>$15.000</td>
<td>$15.000</td>
<td>$15.000</td>
<td>$15.000</td>
<td>$15.000</td>
<td>$15.000</td>
</tr>
<tr>
<td>Total In-Guide</td>
<td>$72.291</td>
<td>$72.321</td>
<td>$74.917</td>
<td>$74.670</td>
<td>$74.670</td>
<td>$74.670</td>
</tr>
</tbody>
</table>

All center overguide requests are being funded within the BPS in-guide budget.
PPBE 15 HRP Budget

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Research Program</td>
<td>$146.7</td>
<td>$158.5</td>
<td>$161.0</td>
<td>$161.8</td>
<td>$161.7</td>
<td>$161.7</td>
<td>$163.3</td>
<td>$1,114.8</td>
</tr>
<tr>
<td>Ames Research Center</td>
<td>$10.2</td>
<td>$9.6</td>
<td>$9.4</td>
<td>$9.6</td>
<td>$10.1</td>
<td>$10.1</td>
<td>$10.6</td>
<td>$69.7</td>
</tr>
<tr>
<td>Glenn Research Center</td>
<td>$5.2</td>
<td>$6.9</td>
<td>$7.2</td>
<td>$6.0</td>
<td>$6.0</td>
<td>$6.0</td>
<td>$6.1</td>
<td>$43.3</td>
</tr>
<tr>
<td>Johnson Space Center</td>
<td>$105.8</td>
<td>$114.9</td>
<td>$117.1</td>
<td>$123.8</td>
<td>$140.8</td>
<td>$140.7</td>
<td>$141.8</td>
<td>$884.8</td>
</tr>
<tr>
<td>Kennedy Space Center</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$0.2</td>
<td>$1.3</td>
</tr>
<tr>
<td>Langley Research Center</td>
<td>$3.0</td>
<td>$3.0</td>
<td>$3.0</td>
<td>$3.1</td>
<td>$3.1</td>
<td>$3.2</td>
<td>$3.2</td>
<td>$21.6</td>
</tr>
<tr>
<td>NASA Headquarters</td>
<td>$0.9</td>
<td>$1.1</td>
<td>$1.5</td>
<td>$1.5</td>
<td>$1.5</td>
<td>$1.6</td>
<td>$1.4</td>
<td>$9.4</td>
</tr>
<tr>
<td>NSBRI</td>
<td>$21.6</td>
<td>$22.9</td>
<td>$22.6</td>
<td>$17.6</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$0.0</td>
<td>$84.7</td>
</tr>
</tbody>
</table>
BPS/ISSPO Physical Sciences Strategic Development Schedule

Incremental Overview
- **FY 2015**: Q1 to Q4
- **FY 2016**: Q1 to Q4
- **FY 2017**: Q1 to Q4
- **FY 2018**: Q1 to Q4
- **FY 2019**: Q1 to Q4
- **FY 2020**: Q1 to Q4

Milestone Diagram Legend
- **Complete**
- **Incomplete**

Physical Sciences
- **FP 2 NRA**
- **TPU Selected**

Open Source
- **materialsLAB**

Fundamental Physics
- **CAL**
- **QTEST**
- **ACES**
- **GEDS (German)**
- **CSE (Swiss)**
- **ICEA/E (Germ)**
- **CETSOI (Beckerman)**
- **SETA (Nacapiano)**
- **MCAS (Poirier)**
- **FOG (Swanson)**
- **FANMS (Hoffman)**
- **CSLM-4**
- **SpX-5**

Materials Science
- **PPU**
- **FHA**
- **SpX-12**

Biophysics
- **MMB-B**
- **MMB-MB**
- **SpX-7**

Fluid Physics
- **ZBOT**
- **ZBOT-2**
- **ZBOT-3**
- **PARE**
- **FBRSE**
- **FBCE**
- **M6HT**
- **EHD**
- **Cl**
- **SFCR**
- **SFCR/KDR**
- **SFCR/CDR**
- **SFCR/PRD/CDR**
- **SFCR/PHA**

Combustion Science
- **CFI**
- **ACME**
- **SOHE**
- **ACE-M**
- **ACE-H**
- **ACE-T**
- **ACE-E**
- **OASIS**
- **LCN**
- **SPR/FHA**

Complex Fluids
- **IFSU-G**
- **LMM Enhancements**
- **SpX-6**
- **SpX-10**
- **SpX-11**
- **SpX-12**
- **SpX-13**

ISS Facilities
- **SPR/PHA**
- **PHA**
- **TBD**

Signature: ____________________________ **Signature:** ____________________________ **Signature:** ____________________________
BPS/ISSPO Space Biology Strategic Development Schedule

Milestone Diagram

<table>
<thead>
<tr>
<th>Increment</th>
<th>ISS</th>
<th>Space Biology</th>
<th>Open Source</th>
<th>Mammalian Physiology</th>
<th>Microbiology</th>
<th>Plant Biology</th>
<th>Cell & Molecular Biology</th>
<th>Multi-user</th>
<th>Organisal Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2015</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>FY 2016</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>FY 2017</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>FY 2018</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>FY 2019</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>FY 2020</td>
<td></td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
</tbody>
</table>

Legend
- **Complete**
- **Incomplete**

Key Milestones
- **BioReg-1**: SAR
- **BioReg-2**: FPR
- **BioReg-3**: FPA
- **BioReg-4**: Kickoff
- **BioReg-5**: RFR
- **BioReg-6**: TBD

Signature

Signature: ________________________________ **Signature:** ________________________________ **Signature:** ________________________________
Base Response to Decadal Survey

= $150 M/yr

- Mouse Centrifuge
- Life Beyond LEO
- Research for Bioregenerative Life Support
- 2nd payload/yr for cell science
- Mouse Centrifuge payloads, Granular materials program
- 100% of budget for Science Capability Development
- Fully fund SISSEC (Int.) Optical Clock project

Open Source Initial Capability

= $120 M/yr

- ISS campaigns (incl. GeneLAB & Microbial Observatory) in place
- Twice annual NRAs
- Informatics Databases in place for PS and SB
- 50% of full budget for Science Capability Development
- Fully fund “Open Source” LAB Facilities for PS and SB.
- Fully fund QTEST (International); Phase A study SISSEC.
- Initiate Biophysics cross-discipline experiments

PPBE15 Program (Post MOA)

= $73 M/yr

- 2nd payload/yr for rodents a possibility, pilot OS projects started
- Annual NRAs
- Partial funding for Science Capability Development
- GeneLAB, Microbial Observatory concepts initiated
- Cold Atom Lab implementation started
- Re-engaging community through working groups to kick start Open Source Science campaigns
- Much better posture to maintain hwde commitments to ISS

PPBE14 Program

= $73 M/yr

- Intermittent Annual NRAs
- Limited ISS payloads for rodents, plants, cells, and flies
- 2 Nano and 2 Bion missions
- No GeneLAB, Microbial Observatory, Open Source Science
- Limited to no ability to maintain hardware delivery schedules
Issues/ Concerns moving forward

- Funding for research continues to be a constraint, still nowhere near an adequate response to the Decadal Survey recommendations.

- Developing a ground research capability is still an area of concern. A spaceflight program needs a sound ground research base to be successful.

- Need ISS to continue to deliver the MOA agreement content.

- ISS to address some of the additional requests made by the centers and SLPSRA to be able to maximize our research opportunities.

- Research facilities on ISS are limited, need additional facilities to be able to deliver our research. Additional Glovebox, Rodent Research Centrifuge are some examples.

- CASIS is a new endeavor, learning how to deal with this new paradigm.
Open Science Summary

- Open Science is a paradigm shift away from the traditional approach of enabling science for one specific Principal Investigator (PI) at a time.

- Open Science allows us to enhance science returns by developing high-content science community reference experiments (flight data for advanced modeling, analysis, and discovery) which will later support large numbers of investigators to conduct ISS derived research—NASA funds NRA to encourage translation of ISS derived research to multiply discovery and enable exploration and commercialization.

- Our vision is to implement Open Science initiatives across the whole program.

Initial Pathfinders:

- GeneLab (Space Biology)
- MaterialsLab (Physical Sciences)
- Physical Science Informatics (PSI)

- Implementation of these pathfinders is bound by our budget.
Open Science is paradigm-shifting for NASA

Open Science shifts selection, implementation and dissemination of space sciences research and data

<table>
<thead>
<tr>
<th>Traditional Approach</th>
<th>Open Science Approach</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRA process to select 1 PI = 1 focused experiment</td>
<td>Open Science experiments defined based on science community inputs and Decadal Survey (systems approach). Science Definition Teams formed (not a single PI) to define reference experiments.</td>
<td>Increases data generated from every mission PLUS the systems approach yields data with relevance to the broader community</td>
</tr>
<tr>
<td>PI leads experiment with integration and operations support</td>
<td>Science Definition Team standardizes procedures and operations to conduct extensive high-content sample analysis of broad interest.</td>
<td>Generates data of interest to traditional and non traditional spaceflight research communities: CASIS, commercial, scientific, international</td>
</tr>
<tr>
<td>PI chooses where to publish. Data is released publicly when PI publishes</td>
<td>All data is released publicly in searchable informatics system/database, a linkable system with collaboration and analysis tools built in. NRA funds many investigations to translate ISS data into knowledge</td>
<td>Creates a integrated database for spaceflight data to increase collaboration and amplify impact of research to greatly increase science return from ISS and other flights</td>
</tr>
</tbody>
</table>
Value of Open Science for NASA Missions and Earth-based Applications

- **Traditional Space Science Community**: NASA researchers and Pis will use GeneLab, MaterialsLab, and PSI to study and understand the fundamental scientific principles in space address the high priority recommendations of the NRC Decadal Survey.

- **NASA Human Research Program**: geneLab is a potential host for One Year Twins Study Data – Pilot Study for Human Omics Data. HRP researchers will use geneLab to help close gaps in knowledge related to the risks to human health in space, and help develop more effective countermeasures to ameliorate the detrimental effects of spaceflight on human health and performance.

- **CASIS Commercial Utilization of Space**: Open Science tools provide an opportunity for data mining to identify commercial targets for drug development, personalized medicine, materials engineering, and translational sciences.

- **Non-Traditional Space Research Communities**: Open Science data and informatics will benefit commercial interests wherever those Earth-based research can be influenced at the molecular scale by gravity. Broader technical spinoffs include the advancement of the multi-channel omics approach of GeneLab. Open Science will demonstrate analytics and data processing possibilities that have broader value and benefit beyond the analysis of spaceflight data alone.

- **The General Public**: anyone with internet access and interest can access geneLAB data and freely explore Space Biology and ISS research results for themselves.
Biological & Physical Sciences (BPS) Status
SLPS Gravity-Dependent Physical Sciences Research

Biophysics
- Biological macromolecules
- Biomaterials
- Biological physics
- Fluids for Biology

Fundamental Physics
- Space Optical/Atomic Clocks
- Quantum test of Equivalence Principle
- Cold atom physics
- Critical point phenomena
- Dusty plasmas

Complex Fluids
- Colloids
- Liquid crystals
- Foams
- Gels
- Granular flows

Combustion Science
- Spacecraft fire safety
- Droplets
- Gaseous – Premixed and Non-Premixed
- Solid Fuels
- Supercritical reacting fluids

Fluid Physics
- Adiabatic two-phase flow
- Boiling, Condensation
- Capillary Flow
- Interfacial phenomena
- Cryogenics

Materials Science
- Metals
- Semiconductors
- Polymers
- Glasses, Ceramics
- Granular Materials
- Composites
- Organics
Space Biology Project

- Zero-G Studies of Few and Many Body Physics (PI E. Cornell)
 - How complexity of the universe evolves from subatomic scale
 - Incorporation of Potassium 39 and a fast tuning magnetic field into CAL instrument
- Atom interferometry will pave the way for definitive space-based tests of Einstein's Theory of General Relativity (PI N. Bigelow, Co-PI W. Ketterle, Co-I W. Phillips)
 - Holy grail of theoretical physics probing deep into Planck-scale physics
 - Incorporation of Bragg scattering beam for two species atom interferometry
- Microgravity dynamics of bubble-geometry Bose-Einstein condensates (PI Nathan Lundblad)
- Fundamental Interactions for Atom Interferometry with Ultracold Quantum Gases in a Microgravity Environment (PI Jason Williams)
- Development of Atom Interferometry Experiments for the International Space Station's Cold Atom Laboratory (PI Cass Sackett)

CAL1 5 Flight Investigations and Minor Facility Modifications Needed by Nobel-Laureate PIs
CAL’s Place in Probing Space-time Structures

1 metre \(10^0\) m
1 millimetre \(10^{-3}\) m
1 micrometre \(10^{-6}\) m
1 nanometre \(10^{-9}\) m
1 picometre \(10^{-12}\) m
1 femtometre \(10^{-15}\) m
1 attometre \(10^{-18}\) m
1 zeptometre \(10^{-21}\) m
1 yoctometre \(10^{-24}\) m

atomic nucleus

logarithmic scale

planck scale

10^{-33} m

person

CAL basic research on Quantum Computation

Alpha Magnetic Spectrometer

Large Hadron Collider (Dark Matter?)

CAL EEP and Fine Structure Constant Measurement using Cold Atoms*

Violation of Einstein Equivalence Principle (EEP)? Quantum Gravity (Black Hole?)

~US$2B

~US$10B

<US$60M
Purpose: Engineers & scientists identify most promising engineering-driven ISS materials science experiments

Goal: Seek needed higher-performing materials by understanding materials behavior in microgravity

Open Research and Informatics: Inspire new areas of research, enhance discovery and multiply innovation

Partners:
- Industry
- Academic Institutions
- DOD
- Other Government agencies
- International partners
- NASA
- CASIS
materiaLab Workshop: Registered Attendees’ Organizations

Commercial Entities
- Alcoa
- ASM International
- Astrium North America
- BNIM
- Boston Electrometallurgical Inc
- Brimrose
- Caterpillar
- Consultant
- CST
- DQX Company Metallurgist & PMI, LLC
- DS SolidWorks
- Ford Motor Company
- GEOCENT
- Made in Space
- Materials Development, Inc.
- Power Systems Manufacturing
- RightDirection Technology Solutions
- Sierra Nevada Corporation
- Southern Research Assoc
- SpaceX
- Techshot, Inc.
- Teledyne Brown Engineering
- ZIN Technologies, Inc.

Academic Institutions
- Alfred University
- Alfred University/Kazuo Inamori School of Engineering
- Auburn University
- Austin Peay State University
- Carnegie Mellon University
- Clarion University
- Cleveland State University
- Dartmouth College
- Georgia Institute of Technology
- Harvard Medical School -- Brigham and Women's Hospital -- MIT
- Iowa State University
- IRDFProject Harvard / Columbia
- Louisiana State University
- Northwestern University, Evanston
- Oregon State University
- Pennsylvania State University
- Purdue University
- South Dakota School of Mines & Tech.
- South Dakota State University
- Stony Brook University
- Texas A&M University
- The Catholic University of America
- The George Washington University
- The University of South Dakota
- Tufts College Inc
- University of Alabama
- University of Alabama at Birmingham
- University Of Alabama, Huntsville
- University of California, Davis
- University of Central Florida
- University of Colorado
- University of Colorado, Boulder
- University of Delaware
- University of Houston
- University of Houston, Center for Advanced Materials,
- University of Illinois at Urbana-Champaign
- University of Iowa, Iowa City
- University of Kentucky
- University of Maryland, Baltimore County
- University of Massachusetts
- University of Massachusetts Lowell
- University Of Massachusetts, Amherst
- University of Michigan
- University of Minnesota
- University of Puerto Rico at Rio Piedras
- University of Texas at Austin
- University of the District of Columbia
- University of Washington
- Wayne State University
- University of New Mexico/AFRL

Military
- Army Research Laboratory (ARL) / Materials & Manufacturing Science Division
- U.S. Army Research Laboratory
- US Army
- US Army TARDEC

Other Government Agencies
- Federal Housing Authority
- NIST
- Office of Science and Technology Policy, Executive Office of the President

Foreign Entities
- European Space Agency
- CNES
- NUI
- Tanzania Commission Science & Tech

NASA and Affiliated Entities
- CASIS
- NASA/ARC
- NASA/GRC
- NASA/GSFC
- NASA/HQ
- NASA ISS Program Science Office
- NASA/JPL
- NASA/JSC
- NASA/JSC/White Sands Test Facility
- NASA/KSC
- NASA/LaRC
- NASA LaRC/National Institute of Aerospace
- NASA/MSFC
- NRESS
Goal:
To accelerate the pace of discovery, development, and deployment of advanced materials in US manufactured goods.

*Components:
1. Enhanced fundamental understanding of materials
2. New measurement methods for characterizing materials (new data and standards)
3. Improved data and enhanced (open) databases
4. New computational tools for materials science
5. Software development

Result:
US manufacturers take advantage of advanced materials to make their products more competitive because the process of discovery, development, design, and deployment of these materials is faster, less expensive, and more predictable.

* MaterialsLab will contribute to items 1, 2 and 3.
2013 NRA Selections Announced
 - 96 proposals received, 26 proposals selected for flight definition
 - Total potential value of $11.7M

Rodent Research has three missions in planning
 - RR-1 planned for launch on SpX-4 this month – first rodents on a Dragon flight
 - RR is the largest single user of crew time on ISS – between 100 and 200 hours per increment pair

Veggie Restarts Life Support Technology
 - Veggie clearly demonstrated feasibility and interest in growing food on orbit
 - HRP now involved to assess safety and palatability
2013 Space Biology NRA Timeline

- NRA Issued: November 15, 2013
- Step-1 Proposals Due: December 19, 2013
- Step-2 Proposals Due: March 20, 2014
- Peer Review: April-May 2014

Selection For Definition Review: August 11, 2014 (Note: Proposals are recommended today for a 6-18 month Definition Study in which the centers and proposers study experiment maturity, implementation feasibility/risks and costs. Budgets in the proposals are notional and may change during definition. Definition studies may result in a recommendation to not propose the experiment for flight, or to modify details of its implementation plan or budget. All budgets will be within the limits defined in the NRA. After definition is complete the centers will bring appropriate proposals forward to the Selecting Official to be considered for “Selection for Flight”.)
From Section B in the solicitation:

- **B.1 - Mechanisms of Mammalian Adaptation to Long-term Spaceflight and Re-adaptation On Return to Earth:** proposals are requested to study the effects of long-term spaceflight exposure on female mice.

- **B.2 - Mammalian Cell, Tissue and Organ Generation and Degeneration in Space:** studies are requested that use cell cultures from human or other mammalian model organisms to study changes in fundamental cellular processes under microgravity conditions.

- **B.3 - Multigenerational and Developmental Biology of Invertebrates:** studies are requested that use small invertebrate model organisms to study processes of reproduction, development, aging and multigenerational adaptation to life in space.

- **B.4 - Plant and microbial growth and physiological responses to the multiple stimuli encountered in space flight environments:** proposals will characterize how plant, invertebrate, and microbial growth and physiological responses are affected by a microgravity/space environment.

- **B.5 - Experiments demonstrating the roles of microbial-plant systems in long-term life support systems:** flight experiment proposals are requested that explore the basic biological changes in spaceflight that will affect the potential for the use of plant, invertebrate and microbial systems in long term Bioregenerative Life Support Systems.

- **B.6 - Long-term, multigenerational studies of microbial population dynamics:** experiments are requested for multigenerational studies of physiological, genetic, metabolomic, and reproductive characteristics of microbial, invertebrate, and plant populations onboard the ISS.

- **B.7 - Special topic - ISS Rodent Tissue Sharing Opportunity:** two prime experiments selected from the recent NRA NNH12ZTT001N will be conducted with mice on the ISS (Space X6). All tissues from both experimental and control animals (other than blood, spleen & control mice brains) will be available for experiments proposed by investigators whose studies address at least one of the relevant high priority recommendations of the Decadal Survey.

- **B.8 - Special Topic - Space Biology Investigations Using Nanoracks Cubelab ISS Flight Hardware:** NASA encourages the submission of proposals for Space Biology research emphases described in sections B.2, B.3, B.4 B.5 or B.6 that utilize the Nanoracks Cubelab facility, currently aboard ISS.
Space Biology Statistics by Subject Area

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>NUMBER RECEIVED</th>
<th>NUMBER 70 &></th>
<th>TOTAL IN PANEL</th>
<th>% PASSED IN PANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpaceFlight Proposals</td>
<td>92</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>6</td>
<td>15</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Microbiology</td>
<td>12</td>
<td>18</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Immunology</td>
<td>8</td>
<td>13</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Plant Biology</td>
<td>10</td>
<td>21</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Neuroscience</td>
<td>4</td>
<td>6</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Developmental Biology</td>
<td>8</td>
<td>17</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Mail Reviews</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>49</td>
<td>92</td>
<td>53</td>
<td></td>
</tr>
</tbody>
</table>
Space Biology Selection STATISTICS

<table>
<thead>
<tr>
<th>Type of Proposal</th>
<th>New to SB</th>
<th>Former</th>
<th>Intramural</th>
<th>Extramural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total # of Proposals = 92</td>
<td>69 (75%)</td>
<td>23 (25%)</td>
<td>16 (17%)</td>
<td>76 (82%)</td>
</tr>
<tr>
<td>Total # Passed Peer Review = 49</td>
<td>32 (65%)</td>
<td>17 (35%)</td>
<td>11 (22%)</td>
<td>38 (68%)</td>
</tr>
<tr>
<td>Total Selected for Definition = 26</td>
<td>16 (62%)</td>
<td>10 (38%)</td>
<td>5 (19%)</td>
<td>21 (81%)</td>
</tr>
</tbody>
</table>
Rodent Research
Veggie merges plant science and life support technology

Commander Steve Swanson takes a moment to pose with the red romaine lettuce he just harvested, 6/10/14
Strategic Plan

High Fidelity Draft shared with ISLSWG geneLAB representatives in June 2014

Now signed and approved now awaiting public release
The Expressome as the “Telescope for Life Sciences”

High Content Screening: A Platform for High Density/High Throughput Life Science Utilization of ISS

- Transcriptome
 - mRNA transcription
- Proteome
 - Protein expression
 - Intron/exon editing
 - Protein activity control
 - Signaling
 - Phosphorolation
 - Nitroslylation
- Metabolome
 - Substrates, intermediates, and products for enzyme pathways
- Epigenome
 - Changes in DNA and histone chemistry

Transcriptome
Proteome
Metabolome
+ Epigenome
= Expressome
Human Research Program

- HRP Risk Reduction Model
- One-Year Mission
- Twins Study & Genomics
Human Research Program
Integrated Path to Risk Reduction, Revision B PCN-1 (2014)

Planetary DRM (Mars)

<table>
<thead>
<tr>
<th>Risks</th>
<th>HSRB</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>FY25</th>
<th>FY26</th>
<th>FY27</th>
<th>FY28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Rhythm Problems (Arrhythmia)</td>
<td>Y</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Decompression Sickness (DCS)</td>
<td>Y</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Incompatible Vehicle/Habitat Design (Hab)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Inadequate Nutrition (Nutrition)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sleep Loss/Work Overload (Sleep)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Reduced Muscle Mass (Muscle)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Reduced Aerobic Capacity (Aerobic)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Orthostatic Intolerance (OI)</td>
<td>Y</td>
<td>3</td>
</tr>
<tr>
<td>Team Performance (Team)</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Intervertebral Disc Damage (IVD)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Host-Microorganism Interactions (Microhost)</td>
<td>1</td>
<td>Inc</td>
<td>Risk Understood -Microbiome, CMs and Affected Microorganisms</td>
<td>Risk Understood -Virology Mechanisms</td>
<td>Risk Understood</td>
<td>CM Developed</td>
</tr>
<tr>
<td>Human-Computer Interaction (HCI)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Occupant Protection (OP)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Early Onset Osteoporosis (Osteo)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Altered Immune Response (Immune)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Bone Fracture (Fracture)</td>
<td>Y</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Intracranial Hypertension/ Vision (VIP)</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Errors Due to Training Deficiencies (Train)</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Unpredicted Effects of Medication (Stability)</td>
<td>Y</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Inadequate Food System (Food)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>In-Flight Medical Capabilities (IFMC)</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Vestibular/Sensorimotor Impacts (Sensorimotor)</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Behavioral Conditions (BMed)</td>
<td>3</td>
<td>Inc</td>
<td></td>
</tr>
<tr>
<td>Critical Task Design (Task)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Inadequate EVA Suit (EVA)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Human & Automation/Robotic (HARI)</td>
<td>2</td>
<td>Inc</td>
<td></td>
</tr>
<tr>
<td>Exposure to Dust & Volatiles (Dust)</td>
<td>2</td>
<td>Inc</td>
<td></td>
</tr>
<tr>
<td>Renal Stone Formation (Renal)</td>
<td>Y</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Radiation Exposure on Human Health</td>
<td>Y</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Assumptions:
- **450 crew/hours/increment**
- **6 crew/increment**
- **6 month missions**

Updated
06/16/14
Rev B PCN-1
HRPCB-approved

Human System Risk Board (HSRB) Hazards: 1. Altered Gravity; 2. Hostile/Closed Environment; 3. Isolation; 4. Distance; 5. Radiation
Human Health Countermeasures - Path to Risk Reduction - VIIP

VIIP1: We do not know the etiological mechanisms and contributing risk factors for ocular structural and functional changes seen in-flight and postflight.

VIIP3: We need a set of validated and minimally obtrusive diagnostic tools to measure and monitor changes in intracranial pressure, ocular structure, and ocular function.

VIIP12: We do not know whether ground-based analogs and/or models can simulate the spaceflight-associated VIIP syndrome.

VIIP13: We need to identify preventative and treatment countermeasures (CMs) to mitigate changes in ocular structure and function and intracranial pressure during spaceflight.

VIIP

Current PRD: Mars

Mars DRM Research Criticality

- 3x4
- 3x3
- 3x1
- 3x

Eye
- Pathophysiology-ICP
- NSBRI/Ocular Structure
- VS/ICP
- Ocular Structure Flight
- Direct Implanted ICP (TBD)

Brain
- Pathophysiology-Venous congestion/edema
- VIIP MRV
- DTI
- Cephalad Fluid Redistribution
- CSF Dux Retro
- CSF Dux Pros
- Rodent arachnoid

Cardio
- Pathophysiology-Capillary fluid shift
- NSBRI/Vascular Compliance
- Enthab Bedrest
- Vascular Compliance

Eye etiology informed, correlated cognition and sensory motor function

Brain, Cardio etiology informed, correlated cognition and sensory motor function

Risk Understood/Potential CMs Identified

$route

- Bridges gaps and supports CM evaluation

CMs Validated

CMs Optimized
MHRPE 1-Year Mission (1YM) Update

Multilateral biomedical investigations on US and Russian crewmembers

2012:
• Agency-level bilateral agreement
• Candidate investigation lists exchanged

2013:
• Bi-monthly meetings at IBMP
• Developed milestones, overarching principles for hardware, data, subject sharing
• Field Test experiment (US, Russian co-PI’s) initiated, transitioned to operations
• Fluid Shifts experiment (US, Russian co-PI’s) initiated; implementation issues
• Identified complementary ESA, JAXA investigations (thus “multilateral”)
• Initiated multi-step crewmember informed consent process

2014:
• Completed informed consent for both crewmembers
• Sponsored Joint PI meetings to establish collaborations and data exchange needs
• Fluid Shifts experiment formally added to Russian science program (see box below)
• Crew time oversubscribed (both US and Russian)
 o Majority of investigations “below the line”
 o Nearly-full implementation expected with further timeline refinement

Fluid Shifts Experiment
• Endorsed by Roskosmos
• Approved by KNTS (Roscosmos-RAS committee: V. Solovyev, chair; A. Markov dep.)
• Energiya to assess feasibility, provide recommendation

Note: used one-off ad hoc process – slow-going on developing truly joint process for fully-integrated US-Russian investigations
Differential Effects on Homozygous Twin Astronauts Associated with Differences in Exposure to Spaceflight Factors

Jul 2013: Solicitation released
Sep 2013: 40 proposals received
Jan 2014: Peer review panels met
- Sleep, Metabolism, Microbiome
- Omics, Epigenetics, Chromosomes
- Cardiovascular
Mar 2014: 10 proposals selected
Apr 2014: First IWG Meeting held
May 2014: Received IRB approval (contingent*)
July 2014 Received HRMRB approval (contingent*)
Current: Detailed planning integrating all investigators into one combined study
Oct 2014: Planned collection of first samples

*HRP is working with OCHMO, CHS, NASA legal, CB, and the IRB to develop a policy that will protect all human spaceflight research subjects volunteering for genetic studies:
- Aspects of risk unique to astronauts
- Provision of genetic counseling
- Permitted degrees of sharing genomic data
- Medically actionable findings and relation to medical records
- Research subject approval of public presentations and publications
- Disposition of samples remaining after the conclusion of an investigation
- Retention of data after the conclusion of an investigation
- Extension of Privacy Act protections after the subject is deceased
Conclusions

• SLPS is poised to move forward into this new exciting era of growth for our research program

• We look forward to continue to work with the ISSPO to implement the MOA and continue to look for ways to maximize our available resources

• SLPS is moving forward with the Open Science research management approach (GeneLAB, materialsLAB)

• We continue to work at HQ and DC to look for ways to identify ways to grow our program