

Cyclone Global Navigation Satellite System

Lessons (Being) Learned: Managing a More Cost-Effective NASA Mission

John Scherrer – CYGNSS Project Manager SwRI (210) 522-3363 jscherrer@swri.edu

- Background
- CYGNSS overview
- Class D, really?
- CYGNSS specific efficiencies
- Overarching personal observations and suggestions

Southwest Research Institute (SwRI) Overview

- Independent, nonprofit applied research and development organization established in 1947
- Over 3,000 employees
- Broad Technological & Scientific Base
- Decentralized Organization
 - **Project Management Approach**
 - More than 1,000 patents

SwRI Space Program Overview

Cyclone Global Navigation

Satellite System (CYGNSS)

Orbiter

2017

Launches

- World class Space Science Research and Instrument Development
- Industry leader in Mission Design and Management and Spaceflight Avionics
- Space Science and Engineering Division:
 - 344 Staff Members with Yearly Payroll of \$33M (FY13)
 - Participation in over 85 missions since program started in 1977, with contracts totaling over \$2B

(DreamChaser)

Flight Control

Computers

Actuator Control

Atmospheric Test

2015

Energetic

Detector for

Solar Probe +

Particle

Launches 2018

\$108M Total Revenue in FY13

Avionics

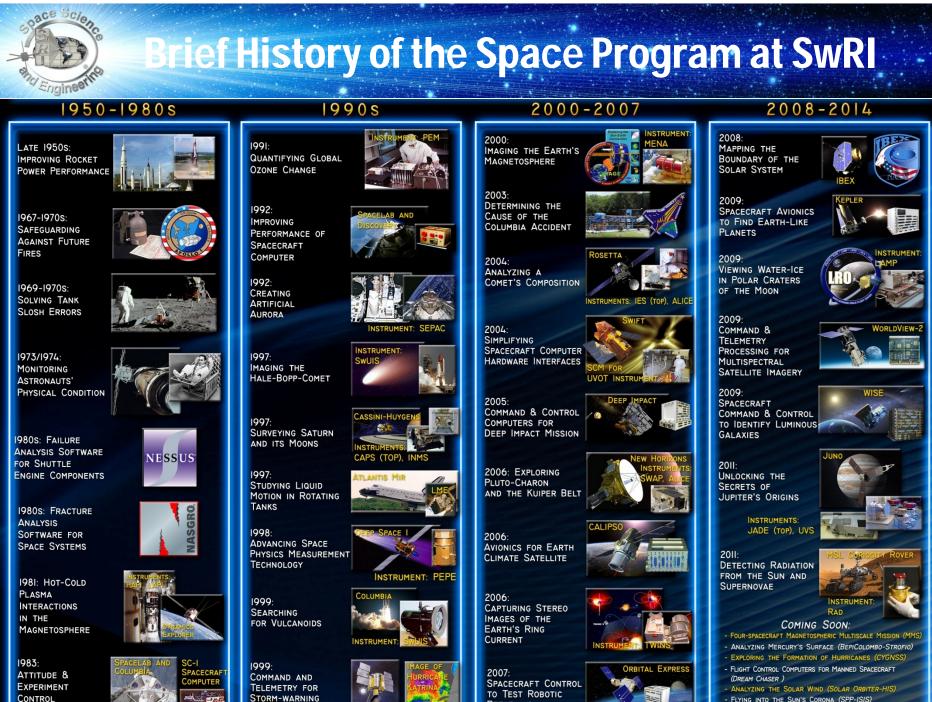
Spectrograph

Moons (JUICE)

(UVS) for

Jupiter Icy

for Bepi/


Colombo

Launches 2015

for MMS

Launches 2015

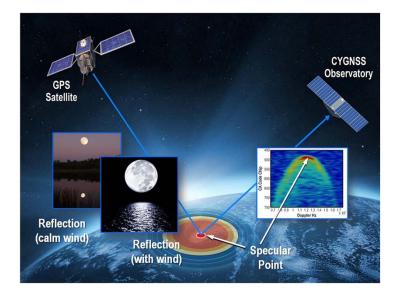
Southwest Research Institute

- FLYING INTO THE SUN'S CORONA (SPP-ISIS)

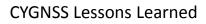
EXPLORING GALILEAN SATELLITES (JUICE-UVS)

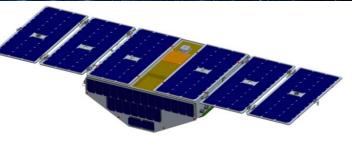
TO TEST ROBOTIC REFUELING

MISSION

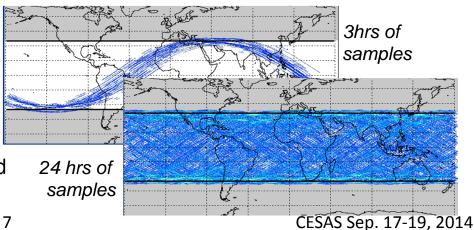

PROCESSING

Where I am coming from...

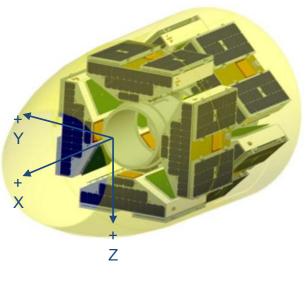

- SwRI employee for 31+ years
- Mechanical engineer
- Initially worked sounding rocket projects
- Moved into instrument design and project management
 - UARS, Cassini, Mars Express, Rosetta, New Horizons, MMS
- Then mission planning and management
 - Deputy Project Manager (PM) of IMAGE (Midex), PM of IBEX (SMEX) and CYGNSS (ESSP EV-2)


clone Global Navigation Satellite System (CYGNSS)

- Problem: 50% improvement in ability to predict the track of a hurricane in the past 20 years but no improvement in prediction of hurricane's future strength
- Science Objective: CYGNSS will measure ocean surface winds 300% more often than current technology to enable better prediction of hurricane growth



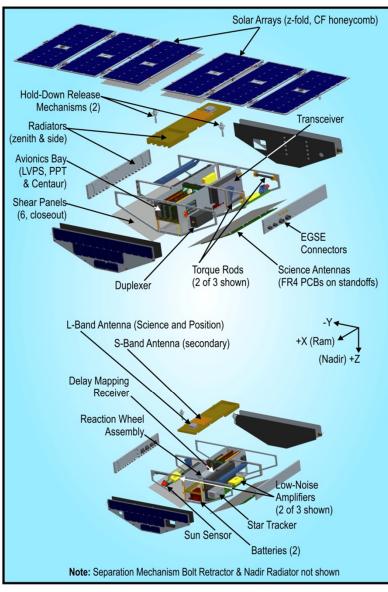
- 8 Low Earth Orbiting spacecraft receive GPS signals reflected by Earth's surface
- Reflected signals respond to ocean surface roughness, from which wind speed is retrieved
- · Valid in all levels of precipitation



- SwRI provides overall mission Project Management, Systems **Engineering**, Mission Assurance
- SwRI responsible for spacecraft fabrication and test
- SwRI responsible for Mission Operations

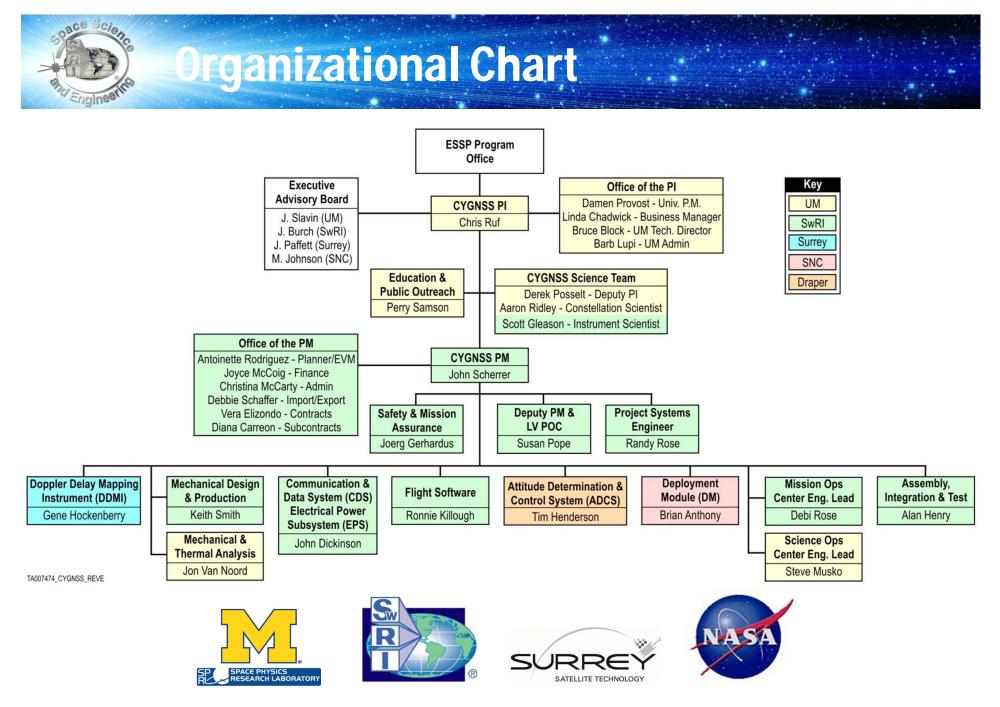
Launch and Deployment Concept

- Pegasus XL Launch Vehicle, GFE
- Altitude: 500 km
- Inclination: 35°
- Launch: Oct 2016
- Operations: 2+ years



Deployment Module

- 8 observatory deployment (solar array stowed)
- Observatories are separated in pairs to balance forces
- Each observatory ~29 kg incl. payload
 - Payload mass: 4 kg
- Total flight segment ~291 kg


CYGNSS Capabilities

Paran	neter/Item	Value						
Radiation Tota	l Dose	>10 krad (RDM:2)						
Design Life		2 yrs						
Obs Mass		25.7kg (20% launch margin)						
		2.1 deg (29% margin)						
Attitude Determination	Star Tracker	6 arc-sec accuracy						
Dotormination	Magnetometer	10 nT sensitivity						
Attitude		3-axis stabilized, 2.8 deg (79% margin)						
Control	Reaction Wheel	18 mNms; 0.6 mNm						
	Torque Rods	1 Am ²						
		59.2 W generation (23% margin)						
Solar Array	Type and Size	Fixed, 0.22 m ²						
	Deployment	One-time Release						
	Cell Type	Triple Junction						
	Type & Capacity	Li-ion, 4.5 Ahr total						
Battery	DOD-EOL, worst-case	19.3% (31% margin)						
Thermal Contr	ol	Heaters, MLI						
	Uplink	S-band 2 kbps						
Comm	Downlink Sci	S-band 4Mbps (3.2dB margin)						

CYGNSS Lessons Learned

CESAS Sep. 17-19, 2014

Top Level Schedule

WBS	Task name	2012 2013				2014				2015				2016			
		Q3 Q4	Q1	Q2	Q3 Q4	Q1	Q2	Q3	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
0	Milestones		Start 12/2012	KDP B (6/19 ◆ ≦ SRR		KDP C (2/20 ◆ ◆ 1 13) / MPDR (MCDR PRs	(1/13/15)	SIR/PER ((6/10)	6/2	7/27 ORF 3 MPSR 4 10	R 8/8	FRR Launch 10/17/10
5.0	PM/SE/Safety & MA/Science				NRE		EM F	M D V	FM0		FM 1-5	FN	16-9	30 WD Sch	edule Reser	ve on eacl	Delivery set
6.0	Microsats				PT XCVR												
6.4	Communications & Data Subsystem		_	Proto C		EM CB	vionics	-				hics/S-Bai	nd/COTS (8	FM 1-2, 3-4,		ve on each	Delivery set
6.5	Microsat Software		Pi	relim D	BC	0.5	B1	IB1.1	B2 V 30	B3	$\nabla \nabla$	l.1 7					
6.6	Struct, Mechanisms and Thermal		Modeling/P	Prelim. D	DI	D STM	I SA EM SA EM Struct			M1-2 3- onics Core Str	ucture Deliv	∇ ∇	∇	30 WD Sche	<mark>y - Seconc</mark> edule Reser ray (SA) & C	ve	
6.7	Electrical Power Subsystem					EM PPT/EN		FM0 P	FM Batter	y FM P V-V-V FM1-2, 3-4,	PT/LVPS 	-7	30 WD Sche	edule Rese	rve on FM B	lattery	
6.8	Attitude Determination and Control				Spec.		EM COTS	7	B2.5	SW B3		7 3	Tracker/Sun S 0 WD Scheo Reserve		ue Rod/Mag/F	Reaction Wh	neel
6.9	Ground Support Equipment			Req./Spe		EM D	EM F EM T		FM1-5 F 7	SDS FM1	30 W Rese						
8.0	Deployment Module			SNC Start	Req.	Prelim D	E		EM F E	• •					edule Reser edule Reser		
10.0	Systems Integration & Testing						Assy.		ЕМІ/ЕМС		Stake & Coa						
10.1.3	EM Obs AI&T								<u> </u>	$-\nabla A$		FM1-4	Combined 1		M1-2 DM S	hock Test	
10.1.5	FM 1-4 Observatory AI&T								*Flight Fab			77-	<u> </u>	$\Delta \overline{\nabla}$			
10.1.5	FM 5-8 Observatory AI&T									FM1 A	ssy i	FM1-4 T F	M 5-8 AI&T	$\nabla \nabla$	VI 5-8 Comi 60 V		.C Ile Reserve
10.2	Obs. to DM AI&T														$\Delta \nabla$	🔨 10 WD	Schedule Rese
10.3	Launch Site & Early Orbit Support			SOC/MOC F	Req.		EM C&	T Def.	MOC SIMS	M C&T Def./	SOC B1		SO	С В2	SOC B3	$\Delta - \nabla$	ich (10/17)
9.0	Ground Segment								7-7-	$\overline{\nabla}$				Z	7	$\nabla - \nabla$	E2E Testing
7.0	Mission Ops & DA															(12/13-12	/12/19) 📐

CYGNSS Lessons Learned

CYGNSS Programmatic Facts

- Principal Investigator (PI) led mission
- Category 3 Class D mission
 - Low cost, highest level of acceptable risk
- Cost and schedule capped (\$100M in \$FY14, not counting launch vehicle)
 - Univ. of Michigan (UM) is prime contract and holds all reserves
 - SwRI contract ~\$66M
- Project management (i.e. schedule, financial, earned value management) is truly a joint effort between UM and SwRI

Class D, really?

- CYGNSS statement of work, data requirements list (DRL) and data requirements descriptions (DRD): 143 pages
- 78 "paper" deliverables
 - Most have multiple drops
 - Several submitted monthly
 - Monthly Project Status Report (~80 pages) including status of technical resources delivered and briefed monthly
 - 533M's to level 2 of Work Breakdown Structure (WBS)
 - Earned Value Management (EVM) Contract Performance Report (CPR) to level 2/3 of WBS with Cost and Schedule Variance Report
 - Integrated Master Schedule (currently over 3800 activities)
- Weekly highlights and briefing to ESSP program office and NASA HQ
- Aerospace Corp. has \$26M contract to provide CYGNSS insight to NASA HQ and Standing Review Board
 - Remember, CYGNSS is cost capped at \$100M

- Review Teams consistently comment that CYGNSS is not "Class D enough"
- However, individual reviewers often request more requirements (e.g., analysis, testing, etc.) in their particular area of interest
- The challenge of Class D is there is no clear definition
 - Either HQ must more clearly define acceptable Class
 D procedures for reviewers, or
 - The project needs clearer authority to define Class D procedures

CYGNSS Efficiencies (1 of 4)

- Maximum use of Commercial Off the Shelf (COTS) components (especially nano and microsat)
 - System flows requirements up rather than down
 - Performance, electrical and software interfaces, environment qualification
- Single payload with known performance and interfaces
 - Near clone of payload currently flying on TechDemoSat
- PI and management team ruthlessly prevent scope creep
- Hold everyone accountable and take action if needed
 - Example: Deployment Module provider change

CYGNSS Efficiencies (2 of 4)

- Relaxed parts-quality requirements
 - Reliability achieved through mission/system level factors vs. traditional (piece-part) Level 2 or Level 3 parts program
 - Approach similar to LADEE, System F6, and various commercial S/C programs
 - Seeks balance between
 - Cost
 - Risk
 - Schedule (short development cycle)
 - Technology available
 - Currently available space qualified components would not meet requirements
 - Risk mitigation: All electronics undergo burn-in for infant mortality screening
 - Parts cost vs. spacecraft cost
 - CYGNSS: 6%
 - MMS: 50%

CYGNSS Efficiencies (3 of 4)

- Small focused team
 - I person at 100% is more efficient than 2 at 50%
 - Combine traditional subsystems and jobs
 - Structure, Mechanical and Thermal
 - Communications and Data System
 - System Engineer and I&T controller
- Protect technical and programmatic margin, but willing to use them judiciously to reduce risk
 - Example: We just made a contract mod (\$75K) to buy long lead motors from an alternate vendor as a backup in case our currently selected reaction wheels fail life test


 Maximum use of physical engineering models to reduce flight build risk → spend money now to save later

Form, Fit, Function Microsat Eng. Model During Communication System Testing Antenna Pattern Mockup in Anechoic Chamber

Structural Thermal Model on Vibe Table

Increased Cost Cycle: A self-fulfilling paradigm that increases cost

Answer is less oversight – More project accountability

7120.5E: The Guiding NASA PM Document

- Theory: The requirements in NPR 7120.5E NASA Space Flight Program and Project Management Requirements are essential for a successful NASA project
- Theory: The requirements in NPR 7120.5E are tailorable (though it says "establishes a standard of uniformity for the process by which NASA formulates and implements space flight programs and projects")

NPR 7123.1B: The Guiding NASA SE Document

- Theory: Likewise, the requirements in NPR 7123.1B NASA Systems Engineering Processes and Requirements "establish the requirements on the implementing organization for performing systems engineering". Again, these requirements are needed for a successful project
 - "COMPLIANCE IS MANDATORY"
- 7123.1B also includes the recommended best practices for entrance and success criteria for the life-cycle and technical reviews

The Problem: Lack of Definition

- While NASA "classifies" projects, only one document actually acknowledges the distinction between the requirements of the different classifications: NPR 8705.4 *Risk Classification for NASA Payloads*
- 7120.5E includes a large compliance matrix which is silent to project classification
- 7123.1B literally uses the word "classification" only once in the whole document (and it is referring to software classification)
- A Class D project should not have the same programmatic (PM and SMA) or SE requirements levied on it as a Class A project
- NASA however, falls back on "one size fits all" and that one size is the default for deliverables, oversight, reviews and review entrance and success criteria, etc.

Suggestions for More Efficiency (1 of 5)

- NASA should provide tailoring per project classification up front; eliminate one size fits all
- Reduce the number of deliverables
 - ~80% of the CYGNSS deliverables are never used again by the project once they are delivered
 - Some documents (i.e. parts lists, materials and processes, configuration management plan, etc.) should be available for onsite review but should not be a project deliverables
 - Eliminate separate deliverables for less complex control plans and roll these into the MAIP (i.e. Configuration Management Plan, Software Quality Assurance Plan, Electrostatic Discharge Plan,...)
 - Or, a deliverable could be an already-developed institutional document rather than a project-specific document
 - Ask: Does the deliverable increase the likelihood of project success? If not, don't require it.

Suggestions for More Efficiency (2 of 5)

- Clearly define requirements as part of the Announcement of Opportunity (AO) release.
 - Already tailored Mission Assurance Requirements (MAR) document and DRD's should be part of the AO.
 - Without these, proposers make assumptions that need to be corrected during Phase A/B negotiations
- Eliminate programmatic reviews in favor of table top reviews
 - Rely on a CDR and PSR formal Standing Review Board-chaired review (all other reviews are prime contractor chaired and are more like Engineering Peer Reviews with NASA technical experts in attendance)
 - NASA could provide subject matter experts for individual technical reviews of subsystems (Example: CYGNSS reaction wheel specific support from NESC during CYGNSS Phase C)
 - Reduce the number of PowerPoint reviews and focus on actual engineering documentation reviews (schematics, layout, mechanical configuration, etc.)

Suggestions for More Efficiency (3 of 5)

- Eliminate formal ANSI compliant or validated Earned Value Management System (EVMS)
 - Require EVM but not with the formality required by ANSI
 - The extra formality is expensive and adds no value
- Eliminate PowerPoint Monthly Status Reporting and rely on Weekly telecon between NASA program office and prime contractor
- Early selection of Launch Vehicle (LV) improves design/engineering decision making; i.e. tailoring to a specific LV vs. many LVs costs time and money...
- Emphasize the use of existing quality management systems (while creating new project specific plans and procedures as needed) and don't require new plans for all SMA disciplines; trust the supplier, but verify implementation CYGNSS Lessons Learned 25

Suggestions for More Efficiency (4 of 5)

- Reduce oversight
 - Example 1: CYGNSS Launch Vehicle MSRR attendance
 - Orbital (launch vehicle provider) 8
 - CYGNSS project 7
 - NASA ESSP (the program office) 1
 - NASA KSC (provides oversight of LV) 19
 - Review board 10 (most of which also are KSC)
 - Example 2: CYGNSS MIT telecon
 - Orbital (launch vehicle provider) 3
 - CYGNSS project 4
 - NASA ESSP 1
 - NASA KSC (provides oversight of LV) 13
- Have the project or program office select and manage the organization that is responsible for LV procurement
 - They are the ones with the most vested interest in the successful return of science

Suggestions for More Efficiency (5 of 5)

- During the selection process, place more importance on "can this project be done for the proposed dollars?"
 - Things that weigh heavily into this include: TRL, complexity, margins, project team, requirements, etc.
- And then after selection, if the project is going off course, make the hard decision...

- In today's fiscal climate, we have to do science for less dollars
- Less bureaucracy, less oversight, and more project accountability is the answer
 - For NASA: Put the money where it counts <u>Science</u> and Engineering and manage the risks associated with less programmatic oversight by participating in value added technical activities
 - Be a part of the solution to technical reviews and challenges and not a bureaucratic burden
- Tailor the PM, MA and SE requirements and oversight to the class of mission: get rid of one size fits all