On the Probability of Occurrence of Extreme Space Weather Events

Pete Riley, Predictive Science Inc., San Diego. CA. Presentation to SSB Committee on Solar and Space Physics, October 7, 2014.

Motivation

What is the likelihood of another Carrington event happening in my lifetime?

Nature loves Power Law Distributions

Mathematical Background

$$p(x) = Cx^{-\alpha}$$

$$P(x \ge x_{crit}) = \int_{x_{crit}}^{\infty} p(x') dx'$$

$$P(x \ge x_{crit}) = \frac{C}{\alpha - 1} x_{crit}^{-\alpha + 1}$$

$$\alpha - 1 = N \left[\sum_{i=1}^{N} \ln \frac{x_i}{x_{\min}} \right]^{-1}$$

$$E(x \ge x_{crit}) = NP(x \ge x_{crit})$$
$$P(x \ge x_{crit}, t = \Delta t) = 1 - e^{-N\frac{\Delta t}{\tau}P(x \ge x_{crit})}$$

Reality Check: Time to Event

- + For Bernouilli Events,
- + with a constant probability of occurrence,
- + The probability of occurrence is:

$$P(x)=\frac{1}{1+\tau}$$

- + Where τ is time to event.
- E.g., if event occurs every 100 years, the probability of one occurring in the next decade is: 1/(1+100/10) = 0.09 or 9%.

Assumptions

- + Quasi-time-stationarity
- + Poisson process (Independent events)
- Power-law distribution through at least the size of the Carrington event

A representative selection of space weather datasets...

- + Hard Solar X-ray data from BATSE
- + CME speeds
- + Dst
- + > 30 MeV Proton Fluences
- + (Others: Equatorward edge of the diffuse aurora, Auroral indices, Kp, etc.)

Hard X-Ray Data from BATSE

Hard X-Ray Data from BATSE

CME Speed

CME Speed

Probability of and Extreme ICME (based on speed)

- + Assume Vcme-crit ≥ 5,000 km/s
- + Slope = -3.2
- + Probability of observing such an event over the next decade:

P(v>5,000 km/s) ~ 85%

CME Speed

Probability of and Extreme ICME (based on speed)

- + For CMEs > 2,000 km/s,
- + Slope = -6.1
- + Revised probability:

P (v \geq 5,000 km/s, Δ t=10 yrs) ~ 12%

Dst

Dst "Events" (Dst < -100 nT)

Dst Power Laws

Probability of and Extreme Geomagnetic Storm (based on Dst)

+ For Dst < -850 nT:

P(Dst ≤ -850 nT, Δ t=10 yrs) ~ 12%

+ For Dst < -1700 nT:

P(Dst ≤ -1700 nT, Δ t=10 yrs) ~ 1.5%

>30 MeV Fluences

>30 MeV Fluences

Probability of an Extreme SPE (based on >30 MeV Proton Fluences)

+ Fluence > 18.8 x 10⁹ cm⁻¹

+ Slope = -2.0

P(> 18.8 x 10⁹ cm⁻¹, Δ t=10 yrs) ~ 3%

Summary

 Probability of occurrence of a Carrington-like (or worse) event is sensitive to the definition of event

- + There are a number of assumptions that may or may not hold:
 - + Time stationarity
 - + Poisson process
 - Power-law distribution
- Major issue that remains to be addressed is the uncertainty associated with the predictions

Future work

+ How to assess the uncertainties?

- + Jeff Love's work (next talk)
- Haximum likelihood methods
- Multiple models of the distribution's tail Robustness
- + Estimates of parameter and model uncertainty
- + Assessing the temporal variability in extreme event probabilities
- Look at other measures of extreme event behavior (GICs, Eq. edge of diffuse aurora, etc.)
- Couple probabilistic forecasts with event-based physical/empirical models

Terrorist Attacks

Terrorist Attacks: World

Terrorist Attacks: USA

Terrorist Attacks: Evolution of Probability over last 40 years

Time (years)