Doing Science with University CubeSats

Therese Moretto Jorgensen

Atmospheric and Geospace Science Division
The National Science Foundation

Committee on Achieving Science Goals with CubeSats 06/22/2015
NSF and Space

- Long tradition of utilizing space observations in research, e.g. in astronomy, astrophysics, space physics, and geosciences
- Mostly based on data provided by NASA, NOAA, and DOD.
- Recently small ventures into also providing scientific measurements from space
NSF and CubeSats

- Exploring untraditional, creative, and low-cost ways to provide space measurements for scientific research
Motivation: Science

CubeSat missions do:

- advance research in many science areas
- spur innovation, creativity and technology development
- Bring space missions within the scope of traditional NSF grants
- enhance university participation in space activities
Cubesats: Obvious Limitations

- Physical size (optics, booms, antennas)
- Power, data rate downlink
- Pointing, maneuvering
- Limited control of orbits
Important Trade-offs

- **Large missions**
 - Single satellites
 - Comprehensive measurements – Complex missions
 - Long lead-times

- **Small missions**
 - Multi-point simple measurements
 - Narrowly focused objectives
 - Fast turn-around
 - Experimental approaches
 - Dispensable & replenishable
Cubesat contributions

- Fill-in gaps in coverage
 - geographic, local time, sky-view, long-time monitoring
- Small-scale structure
 - Multi-point measurements to avoid space-time aliasing
- Interferometry & Tomography
 - Satellite constellations
- New measurements
 - Technology experiments

Motivation: Education and Workforce

CubeSat projects do:

- train the next generation of scientists and engineers in space
- offer rare full, end-to-end mission experience
- spur new excitement for science & engineering
A New NSF Program

- Program conceived 2007; first solicitation 2008
- Utilize CubeSat and P-POD technology development
- Space weather & atmospheric research and education
- 2 new projects per year
NSF Cubesat Program since 2008

- Geospace & atmospheric science and education
- 5 competitions with >80 unique missions proposed
- 12 (15) projects funded
- Grants $900,000 total cost and 3 year duration
Launch Support

- DOD STP, S26, Nov 2010, Minotaur IV, Kodiak
- NASA ELaNA, NPP, Oct 2011, Delta II, Vandenberg
- NRO/NASA ELaNA NROL-36/OutSat, Sep 2012, Atlas V, Vandenberg
- ORS, STP-3, Nov 2013, Minotaur-1, Wallops Island
- NRO/NASA ELaNA NROL-39/GEMSat, Dec 2013, Atlas V, Vandenberg
- NASA ELaNA, SMAP, Jan 2015, Delta II, Vandenberg
Mission Support at NASA Wallops Flight Facility

- Integration, testing, documentation
- Technical POC for satellite developer and launch provider
- Other technical and management support
- UHF and S-Band CubeSat Ground-station support
- As needed & less than 10% of budget
Total 2008-2015: $15.6M

CubeSat Funding FY 2008-2015

- Average (excl. ARRA) over 8 years: $1.6M
- ARRA provided 2 satellite projects and a REU site

Note: 2015 numbers are estimated
Total Funding 2008-2015: $15.6M

<table>
<thead>
<tr>
<th>FY</th>
<th>Project funding (not including ARRA)</th>
<th>ARRA funding</th>
<th>Support funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>$1,441,740</td>
<td>$0</td>
<td>$417,997</td>
</tr>
<tr>
<td>2009</td>
<td>$1,134,773</td>
<td>$2,873,776</td>
<td>$345,657</td>
</tr>
<tr>
<td>2010</td>
<td>$637,457</td>
<td>$0</td>
<td>$234,782</td>
</tr>
<tr>
<td>2011</td>
<td>$2,075,238</td>
<td>$0</td>
<td>$28,871</td>
</tr>
<tr>
<td>2012</td>
<td>$547,234</td>
<td>$0</td>
<td>$135,810</td>
</tr>
<tr>
<td>2013</td>
<td>$1,783,645</td>
<td>$0</td>
<td>$179,970</td>
</tr>
<tr>
<td>2014</td>
<td>$1,447,937</td>
<td>$0</td>
<td>$21,707</td>
</tr>
<tr>
<td>2015</td>
<td>$2,130,296</td>
<td>$0</td>
<td>$150,000</td>
</tr>
<tr>
<td></td>
<td>Total $11,198,320</td>
<td>$2,873,776</td>
<td>$1,514,794</td>
</tr>
</tbody>
</table>

Support funding ~10%
NSF staff ~1/3 FTE

Note: 2015 numbers are estimated
Accomplishments

- Scientific value of CubeSat missions confirmed
- Creative mission ideas and successful implementations
- Scientific data & papers
- Big educational impact
- Increased recognition of cubesats as a viable alternative for space
Cubesats in LEO

- Capability already demonstrated, or will be soon for:
 - Electric and magnetic field instruments
 - Plasma density and temperature instruments
 - Neutral gas pressure gages and wind instruments
 - Mass spectrometers
 - Particle detectors (few keV to several MeV)
 - Photometers and spectrometers (near-Infrared to extreme Ultraviolet)
 - Hyper-spectral imagers
 - Gamma and X ray detectors and spectrometers
 - Radar and other advanced radio receivers
 - GNSS receivers for radio occultation
 - Multispectral microwave radiometers
Essential Elements

- Strong science and engineering collaborations
- Thorough proposal review and selection as guarantee for success
- Requirements dictated solely by launch acceptance
- Minimal prescriptions for project management (testing, review, and documentation)
- Open inter-team discussions
- Funding for students
Cubesats: Change of mindset

Powerful concepts:
- Building to a standard
- Containerized launch

New paradigm:
- Low cost
- High risk acceptance
- Broad participation:
 - high influx of innovation & widespread expertise
The Future

- Secure stable funding line at $2.5 million/ year
- Expansion to other science areas
- Larger constellations (European QB50 project)
- Cubesats everywhere: beyond LEO
- Frequency allocation &
SRI International & U. Michigan

- Ionospheric Plasma Irregularities
 - 3U cubesat
 - UHF Radar Receiver

- RAX I Launched Nov 2010
 - A few experiments; Premature power system failure

- RAX II Launched Oct 2011
 - Complete mission success
 - Operational nearly 18 months
RAX Results

- New findings on sub-meter scale auroral irregularities
 - Conducted a total of 30 experiments; recorded echoes in 4
 - Including artificial heating with HAARP

- Science outcomes
 - More than 10 scientific and engineering publications and more than 15 conference presentations
 - Data from experiments available on website

- Education outcomes
 - 36 undergraduate and 3 doctoral students
 - Alumni at leading-edge companies and gov. labs, including: Jet Propulsion Laboratory, Applied Physics Laboratory, Orbital Sciences, SpaceX, Space Systems Loral, and Department of Defense research labs
- ASTRA, Inc. & Utah St. U.
- Ionospheric Storm Enhanced Density structures
 - 2 identical 1.5U cubesats
 - Electron density; B and E fields
- Launched Oct 2011
 - Part mission success for science (no E-field boom deployment)
 - Huge technology success: demonstrated Mbits/s downlink capability
 - Operational >18 months
DICE Results

- New findings on storm enhanced density structures
 - Two-point measurements of electron density and magnetic field
 - Technology demonstration of Mbits/s download capability

Science outcomes
- More than 10 scientific and engineering publications and conference presentations
- Large dataset (> 8 GB) available on website

Education outcomes
- 6 undergraduate and 3 graduate students
- Alumni at leading-edge companies including: L-3 Communications
- U. California Berkeley & International collaborators
- Ring current dynamics
 - 3U cubesat
 - Energetic ions, electrons and neutral particles (4-20keV)
- Launched Sep 2012
 - Limited mission success; comm problems; some magnetic field data
 - Spacecraft healthy for > 18 months
- U. Colorado, Boulder
- Solar Proton Events & Radiation belt dynamics
 - 3U cubesat
 - Energetic electrons (0.5-3MeV) and protons (10-40MeV)
- Launched Sep 2012
 - Complete mission success
 - More than 2 years operation
CSSWE Results

- New findings on relativistic radiation belt electrons
 - Valuable low-altitude complement to NASA’s Van Allen Belt Probes & Barrel balloon campaign.

- Science outcomes
 - 15 peer-reviewed scientific and engineering publications
 - Full dataset available at NSSDC

- Education outcomes
 - >65 students at undergraduate, masters and doctoral level
 - Basis for 4 dissertations and 3 competitive student scholarship awards
- U. New Hampshire; Montana St. U & Aerospace Corp.
- Relativistic Electron Microbursts
 - 2 identical 1.5U cubesats
 - Energetic electrons (0.3-1MeV) with high time resolution (100ms)
- Launched Dec 2013 & Jan 2015
 - All satellites fully operational; Second pair simultaneous measurements
 - High quality data
FIREBIRD Results

- New findings on relativistic electrons and relativistic electron micro bursts
 - Energy spectrum and spatio-temporal disambiguation of microbursts down to 1.5 seconds (~10km) separation
 - Valuable complement to NASA’s Van Allen Belt Probes

- Science outcomes
 - Many scientific and engineering publications and conference presentations in preparation
 - Still collecting data

- Education outcomes
 - More than 18 undergraduate and graduate students
 - Alumni at leading-edge companies and institutions including: Northrup Grumman Corp, Tyvak, Aerospace Corp, Stanford University
- NASA Goddard Space Flight Center & Siena College
- Terrestrial Gamma Ray Flashes and Lightning
 - 3U cubesat
 - Gamma Rays (to 20MeV); VLF radio and optical
- Launched Nov 2013
 - 2 months to first contact
 - Data collection and analysis ongoing
Firefly Results

- New findings on lightning physics and electron acceleration in Terrestrial Gamma Ray Flashes
 - To date, Firefly has captured over 60 science "snapshots" of high resolution measurements of lightning and gamma ray activity

- Science outcomes
 - Validation and analysis of candidate events still ongoing
 - Data collection still ongoing
 - 10 scientific and engineering publications and presentations

- Education outcomes
 - 30 undergraduate and 6 high school students
 - Internships at NASA GSFC
- Scientific Solutions, Inc; CalPoly; NASA Goddard; U. Wisconsin & U. Illinois

- Composition of the upper atmosphere
 - 3U cubesat
 - Miniature mass spectrometer; global density of H, He, and O and ions

- Launched Jan 2015
ExoCube Results

- Still in commissioning phase
 - Weak radio signal: antenna didn’t deploy
 - Successful comm with 150 foot dish at SRI: solutions at CalPoly and Wallops being worked

- Science outcomes
 - First-light measurements: Successful demonstration of the mass spectrometer instrument

- Education outcomes
 - More than 40 undergraduate and graduate students

![Graph](https://example.com/graph.png)

- EXOCUBE INMS first data
- TOF vs sqrt(atomic mass)
▪ U. Michigan & Naval Research Lab

▪ Thermosphere dynamics
 - 3U cubesat
 - Miniature mass spectrometer; density, temperature, winds and composition of neutrals and ions

▪ Launch Early 2016
Virginia Tech; U. Illinois; Aerospace Corp. & NWRA, Inc.

- Atmospheric gravity waves
 - 6U cubesat
 - In-situ and remote sensing; plasma and neutral temperature and density; Airglow \(\sim \)90km

- Project Started May 2013
 - Expected launch early 2016
- Utah St. U. & & HISS (U. Maryland Eastern Shore)
- Neutral temperature profiles 90-140km
 - 3U Boeing Colony cubesat provided by NRO
 - High resolution, hyper-spectral imaging spectrometer; Daytime airglow O2 760-770nm
- Project Started Sep 2013
- UCLA
- Pitch angle distribution of relativistic electrons and ions
 - 3U cubesat; spinning @20rpm
 - Full angular distribution of electrons (50keV-5MeV) and ions (50-300keV); Magnetic field

Project Started August 2014
- Jointly funded with NASA
- Draper Lab; U. Michigan; UC Boulder; Stanford U.; U. del Turabo

- Providing 4 Cubesats to the European-led QB50 project
 - In-situ measurements of the lower thermosphere 100-320km
 - Atlantis, Columbia, Challenger, Discovery
 - 2 Ion-Neutral-Mass-Spectrometers & 2 AO and O2 Sensors (FIPEX)
 - High resolution, hyper-spectral imaging spectrometer; Daytime airglow O2 760-770nm

- Project Started July 2014