

Integrity ***** Service ***** Excellence

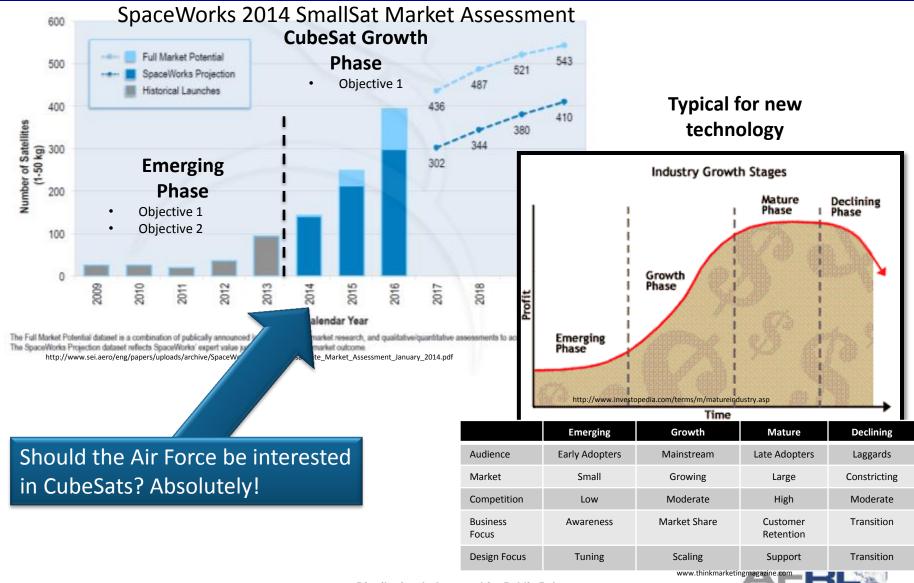
DoD Perspective on CubeSats

06-22-15

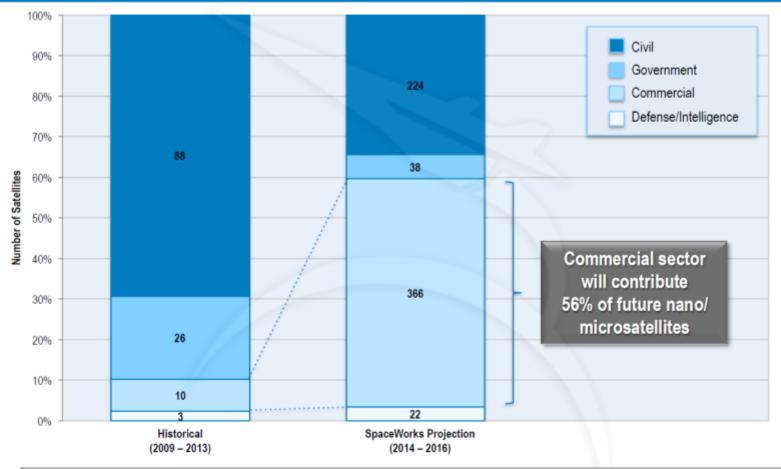
David Voss, PhD Principle Investigator Small Satellite Portfolio AFRL/RVEP

Note: The following slides are a compilation of publically cleared material. Additional information can be provided if requested and time allowed for the public release process.

Outline


- Overview
- Small Satellite Applications for S&T
- Small Satellite Applications for Operational Use
- Small Satellite Applications for Workforce Development
- Limitation of Small Satellites
- Summary

An exciting time for CubeSats

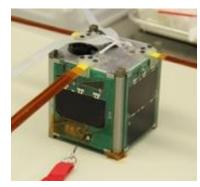


Market Assessment

Nano/Microsatellite Trends by Sector (1 – 50 kg)

The civil sector remains strong, contributing over one third of future nano/microsatellites, but it will see reductions compared to 2009-2013 when the sector contributed 63%

Steve Jurvetson, 2014 SmallSat Keynote



 Objective 1: Determine how CubeSats can meet Air Force objectives (1kg-50kg) What is the art of the possible?

Objective 2: Workforce Development

Objectives will be met through:

- researched performed at AFRL
- partnerships between AFRL and other government labs, industry, and academia
- At 2+ Cubesats per year

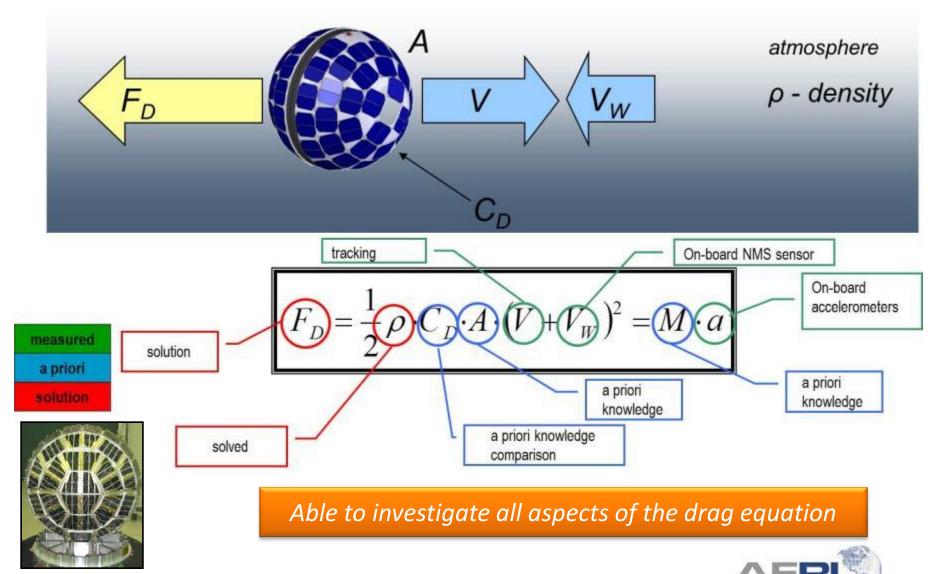
1U (10cm x 10cm)

Small Satellite Applications: Science and Technology

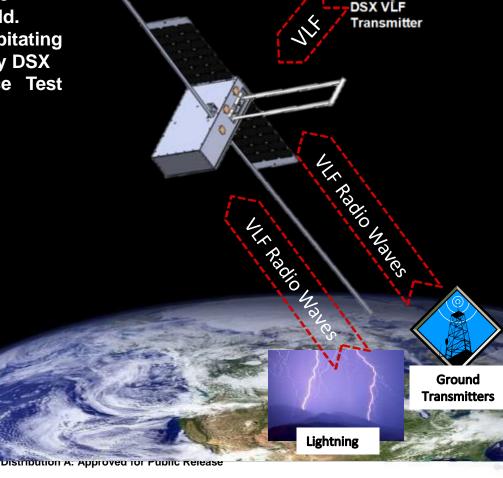
Note: All examples are from the University Nanosat Program

- Small satellites excel at examining a particular, well-defined, science investigation (*Case Study 1*)
- Small Satellites can meet the need for multiple, in-situ measurements (global scale) needed for many space weather models (*Case Study 2*)

Case Study 1: DANDE

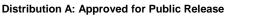

Mission	Investigate atmospheric drag			
Method	Spherical sat. with accels. and a neutral mass spectr.			
Mass	43 kg			
School	University of Colorado			
Case Study 2: VPM				
Mission	Multipoint VLF wave and particle measurements			
Method	6U CubeSat with particle detector payload			
Mass	8 kg			
School	AFRL			

Case Study 1: DANDE



Case Study 2: Very low frequency Particle Mapper (VPM)

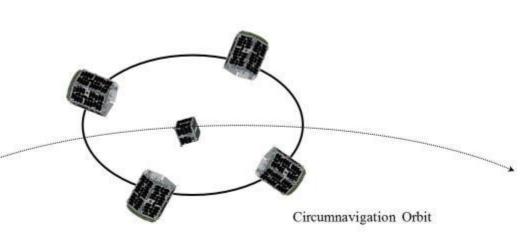
- Critical augmentation for the AFRL Demonstration and Science Experiment (DSX) satellite
- Answers key DSX physics: Can we transmit VLF across the space plasma sheath into the far-field.
- Sensors to observe precipitating energetic particles induced by DSX
- Launch through DoD Space Test
 Program
- STATUS: 2016 Launch

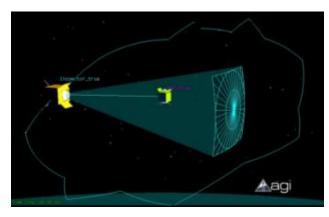


Technology Demonstrations

- Small Satellites provide a low-cost testbed for evaluating new algorithms (*Case Study 3*)
- Small Satellite provide opportunities for risk reduction of components for high value programs (*Case Study 4*)
- •Small Satellites enable future missions (*Case Study 5*)

Case Study 3: M.Sat				
Mission	Circumnavigation of RSO			
Method	Two small sats one with stereoscopic imager for prox-ops			
Mass	~50 kg			
School	Missouri S&T			
Case Study 4: GEARRS				
Mission	Demonstrate Commercial C2			
Method	3U CubeSat with Globalstar radios			
Mass	3.9 kg			
School	AFRL			
Case Study 5: P-Cube				
Mission	Demonstrate Precision Timing between ground and CubeSats			
Method	1U flying atomic clock, corner cube			
Mass	2 kg			
School	University of Florida			

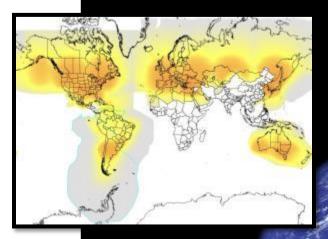




Case Study 3: M. Sat

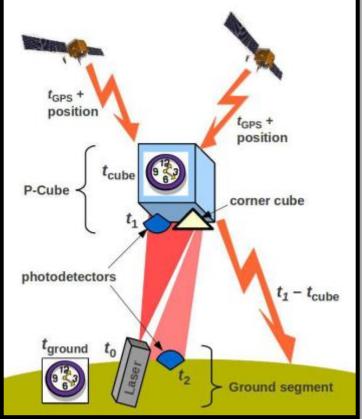
- Visual Based proximity operations to autonomously circumnavigate an RSO (Mrs. Sat)
- Investigating stereo imaging
- Investigate 3D reconstruction of objectives

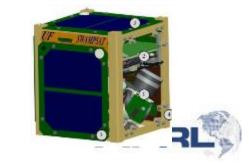
Allow research for on-orbit validation of next generation Prox-OPS



Case Study 4: Globalstar Experiment and Risk Reduction Satellite

- Challenge: Can we use commercial comm to operate AF spacecraft?
 Potential lower cost than current AFSCN 60% global coverage for duplex
- Experiment: Characterize the Globalstar network for LEO spacecraft comm for both the Duplex and Simplex radios
- Mission definition to delivery in 94 days!
- Status: Launched to ISS in July 2014.
 Waiting to be deployed from station





Case Study 5: P-Cube

- Precision Time Transfer with CubeSats
- Enable high accuracy timing between CubeSats and the ground
- Flying Symmetricom's Chip Scale Atomic Clock
- Use laser pulses and a corner cube to determine timing difference between the CubeSat and the ground (frequency stability on the order of ~1.5x10⁻¹⁰)
- Currently being developed by the University of Florida in the NS-8 competition

Enabling technology for disaggregated architectures

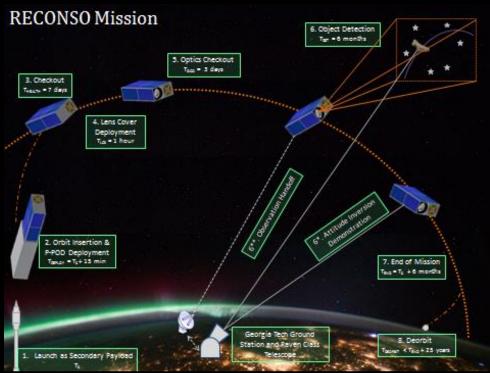
Small Satellite Applications: Operational Use

16

- Small Satellites can offload some of the work from operational high value assets allowing them to be allocated to critical areas of interest (*Case Study 6*)
 Case Study 6: RECONSO Investigate of track of space of the study 6 of the stu
- Small Satellites can perform routine missions for operational customers (*Case Study 7*)

Mission	Investigate object detect and track of space debris			
Method	6U with imager and			
Mass	9 kg			
School	Georgia Tech			
Case Study 7: SHARC				
Mission	Provide radar calibration for ground based radars			
Mission Method				
	ground based radars 5U Cubesat with transponder			

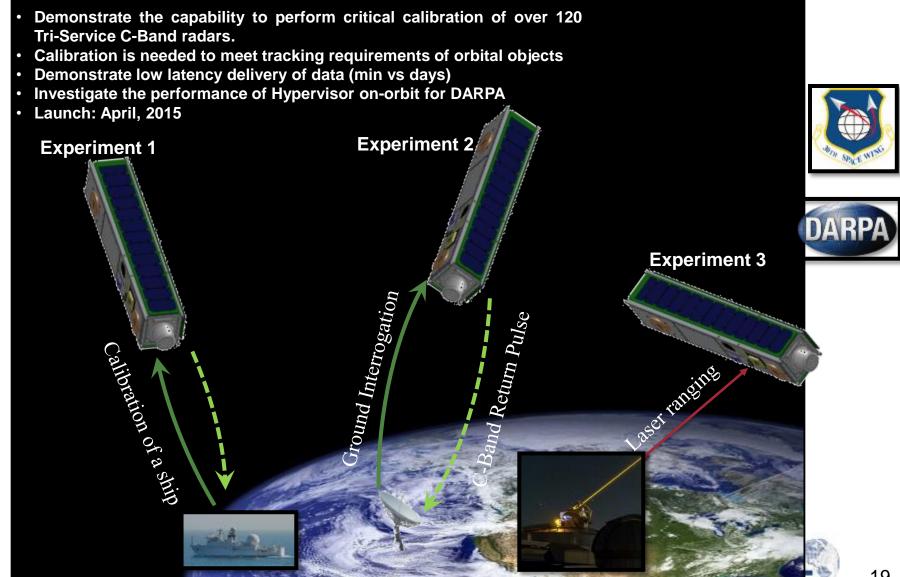

Note: Operational applications is not a goal of the University Nanosat Program



Case Study 6: RECONSO

- Operational augmentation
- Perform object detect and track to help characterize space debris
- RECONSO would allow for missions such as the Space Based Surveillance System (SBSS) to be dedicated to primary areas of interest

Low-cost missions such as RECONSO moves us towards a more complete space debris characterization



Case Study 7: Satellite for High Accuracy Radar Calibration

Small Satellite Applications: Workforce Development

- U.S. Space Policy (NSPD 49): "... implement activities to *develop* and maintain highly skilled, experienced, and motivated space professionals within their workforce."
- Rising above the Gathering Storm, Revisited (2010): "In 2000 the number of foreign students studying the physical sciences and engineering in United States graduate schools for the first time surpassed the number of United States students."
- Preparing the next generation of STEM Innovators (NSF, 2010): "The identification and development of our Nation's human capital are vital to creating new jobs, improving our quality of life, and maintaining our position as a global leader in S&T."

Small Satellites and Workforce Development

- Small Satellite development efforts are a microcosm for large acquisition programs (still have BAA, hardware development, delivery, on-orbit operations)
- Small Satellites typically have
 - Shorter development lifetimes
 - Reduced set of requirements
 - Shorter lifetimes
- They provide an excellent opportunity for understanding the interrelated nature of requirements and how to trade them at the system level
- Programs are excellent for junior workforce development (both at the University level and the professional level)

The University Nanosat Program

University Nanonosat Program

- Multi-year program to design, build, and fly a small satellite
- Program has been around for 15 years
- UNP provides an extremely high fidelity concept study to military relevant missions
- Over 32 small satellite (50kg and down) missions have been investigated through the program.

Roles and Responsibilities

- AFOSR: Funds \$55k per year up to four years
- AFRL Space Vehicles:
 - Executes program (regular design reviews with each school)
 - Performs Environmental Stress Screening
 - Works with the Space Test Program for launch integration
- SMC/Space Test Program: Launch

NS8 Phase A (2013-Spring 2014): 10 University Missions 311 Student Participants

(26 grad / 285 undergrad)

32 Faculty / Staff

- 4 entries to juried publications
- 21 conferences papers

Primary Objective: Education

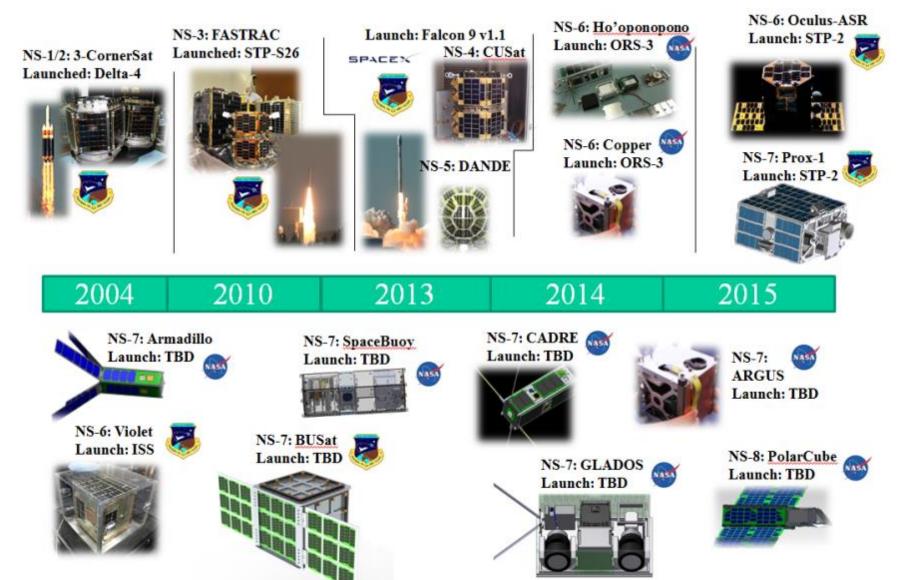
- Systems engineering training
- Workforce development
- Foundation for all UNP decisions

Secondary Objective: Technology

- · Innovative, low cost technology development
- Motivation for Gov. and industry sponsors
- DoD relevant

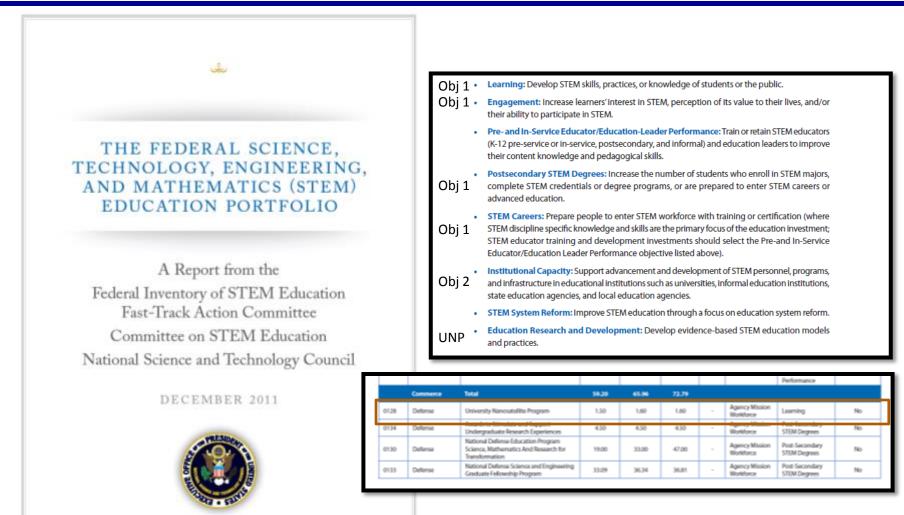
Tertiary Objective: University Development

- Develop space hardware laboratories
- Support university Pl's

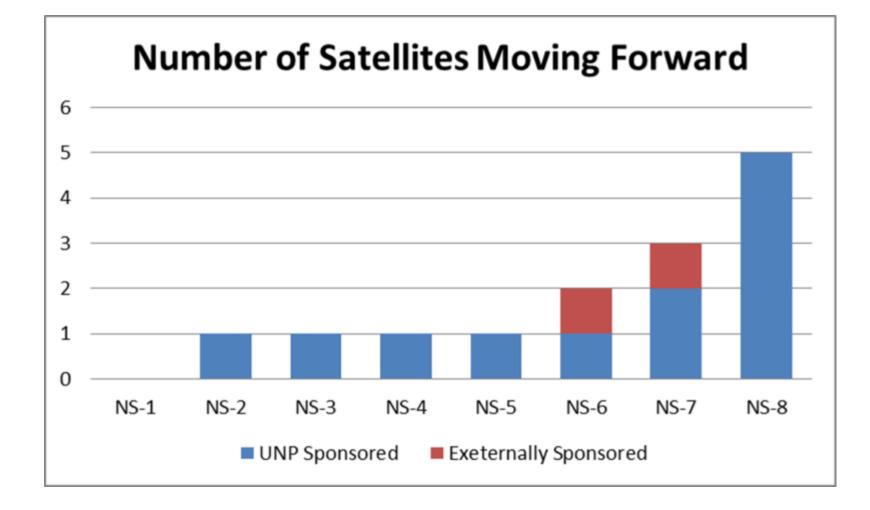


UNP Background

Schools Involved in UNP



Federally Recognized Supporting National STEM initiatives


UNP is recognized as a STEM program in the President's STEM educational portfolio

UNP Satellites Progressing Towards Launch

University Nanosat Program A mature process

Phase A	Phase B	Phase C	Phase D
2 yrs Scheduled based reviews	~ 2yr Milestone based reviews	Launch dependent ~ 1 yr Milestone based reviews	< 1yr
$Kickoff \to CDR$	$CDR \rightarrow ship to AFRL$	Mission Assurance Testing (at AFRL) → Launch Veh.	Spaceflight (Launch through STP/NASA)
 U. Colorado-Boulder (NS8) Boston U. (NS8) U. Buffalo (NS8) Embry Riddle (NS8) Georgia Tech (NS8) Missouri S&T (NS8) Taylor U. (NS8) U. of Florida (NS8) UCLA (NS8) 	 Michigan Tech (NS6) Cornell (NS6) Georgia Tech (NS7) U. of Texas-Austin (NS7) 	- No schools at this moment	Active: - Uof Texas-Austin (NS3) Complete: -Cornell (NS4) -U of Colorado-Boulder (NS5) -U. of Hawaii (NS6)

Small Satellite: Limitations

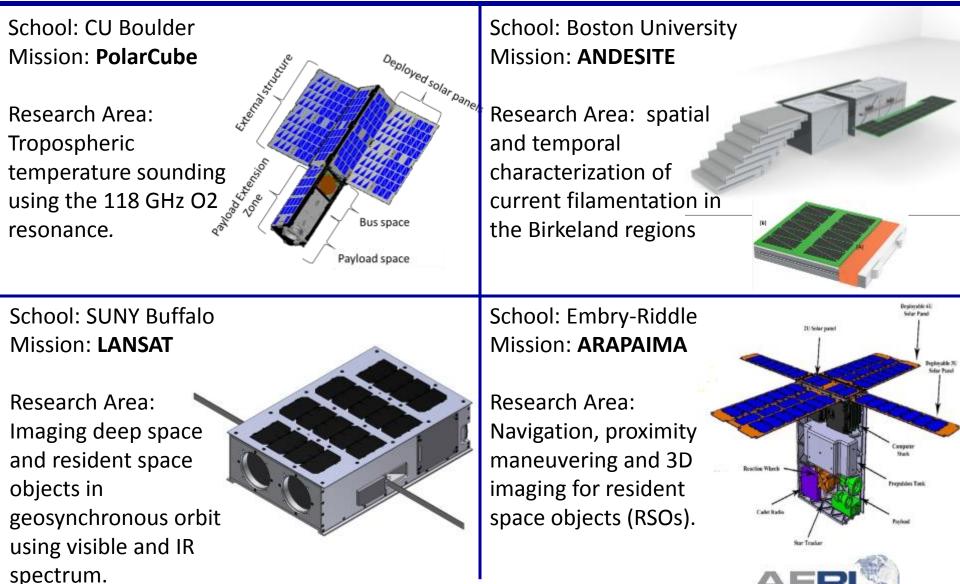
Limitations of Small Satellites

- Power
 - Limitation: Typically are sub-50W with many missions sub-10W
 - Workaround: Duty Cycle payloads
- Communications
 - Limitation: Typically low baud rate communication systems (though changing)
 - Workaround: Creative CONOPS or large dish on the ground
- Multiple measurements
 - Limitation: Due to the low power, reduced volume this restricts the number of payloads a small satellite can fly
 - Workaround: Reduced size of payloads where appropriate
- Environments
 - Limitation: Very rough random vibration environments which we typically do not know at the outset of the program
 - Approach: Use GEVS model and over design (where appropriate)

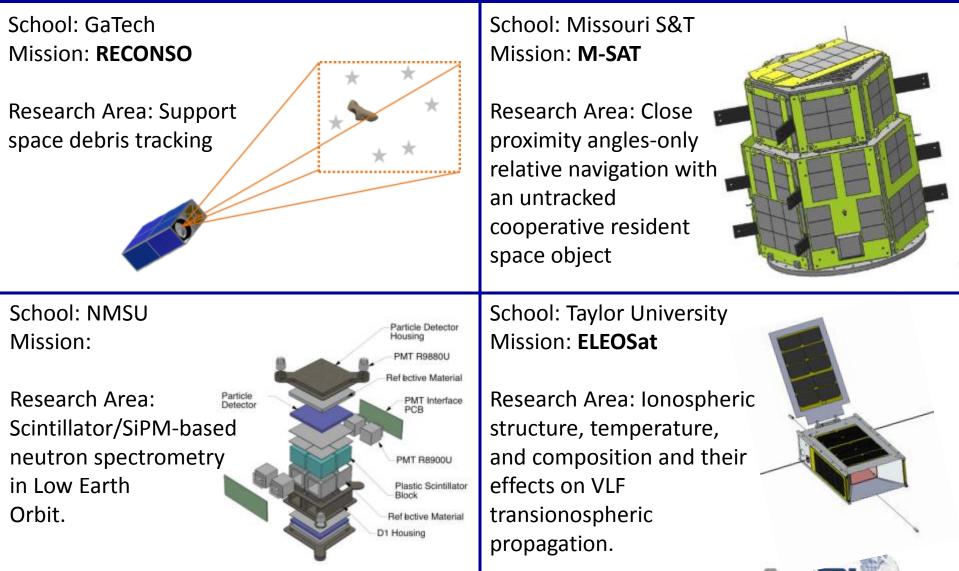
Common Poor Approaches to Small Satellite Missions

- People attempt to cram a 500kg mission into a 50kg bus
 - Small satellite missions must be well scoped for the capability of the platform
- People assume just because it's small it's easy
 - Small satellites (especially Cubesats) are highly integrated systems
 - There are many interdependencies between systems
- People attempt to leverage big space approaches to small satellites
 - Small Satellites allow for new paradigms for acquisition, on-orbit operations and mission assurance

- Small Satellites can play a big part in meeting the needs of the Air Force S&T efforts
- The technology is currently available for tackling many of the space challenges
- Small Satellites can play a large role in helping to train the workforce to better manage large acquisition programs
- The mission must drive the CubeSat design (one size does not fit all)



NS-8 Technology Overview (1/3)



NS-8 Technology Overview (2/3)

School: University of FL

NS-8 Technology Overview (3/3)

Mission: CHOMPTT **Research Area: Precision** time transfer between a CubeSat and satellite laser ranging facility. School: UCLA Mission: **ELFIN Research Area:** Exploring the loss of relativistic electrons

from the radiation belts.

