

Space Technology Mission Directorate Program and Budget Update

Joint Meeting of the
Aeronautics and Space Engineer Board,
Space Studies Board

Presented by:
Jim Reuter
STMD
Deputy Associate Administrator for Programs

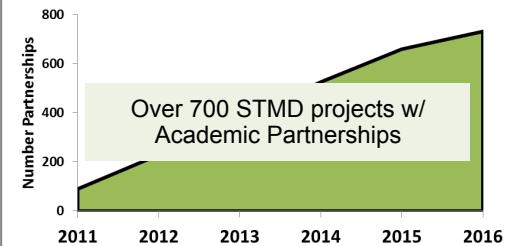
April 26, 2016

Space Technology... an Investment for the Future

- Enables a **new class of NASA missions** beyond low Earth Orbit.
- **Delivers innovative solutions** that dramatically improve technological capabilities for NASA and the Nation.
- Develops technologies and capabilities that make NASA's missions **more affordable and more reliable**.
- Invests in the economy by **creating markets and spurring innovation** for traditional and emerging aerospace business.
- **Engages the brightest minds** from academia and small businesses in solving NASA's tough technological challenges.

Value to NASA

Value to the Nation

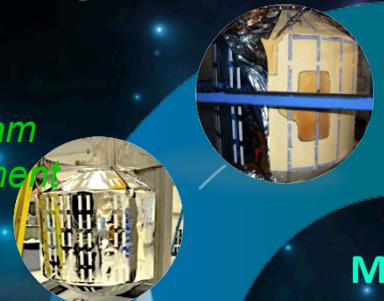


Addresses National Needs

A generation of studies and reports (40+ since 1980) document the need for regular investment in new, transformative space technologies.

Cumulative University Partnerships in Early Stage

Benefits from STMD:


The NASA Workforce
Academia
Small Businesses
The Broader Aerospace Enterprise

Commercial Partnerships

*SBIR/STTR Program
Flight Opportunities Program
Centennial Challenges Program
Regional Economic Development*

Low TRL

Early Stage

*NASA Innovative Adv Concepts Program
Space Technology Research Grants Program
Center Innovation Fund Program*

Mid TRL

Small Spacecraft

Small Spacecraft Technologies Program

Game Changing Development

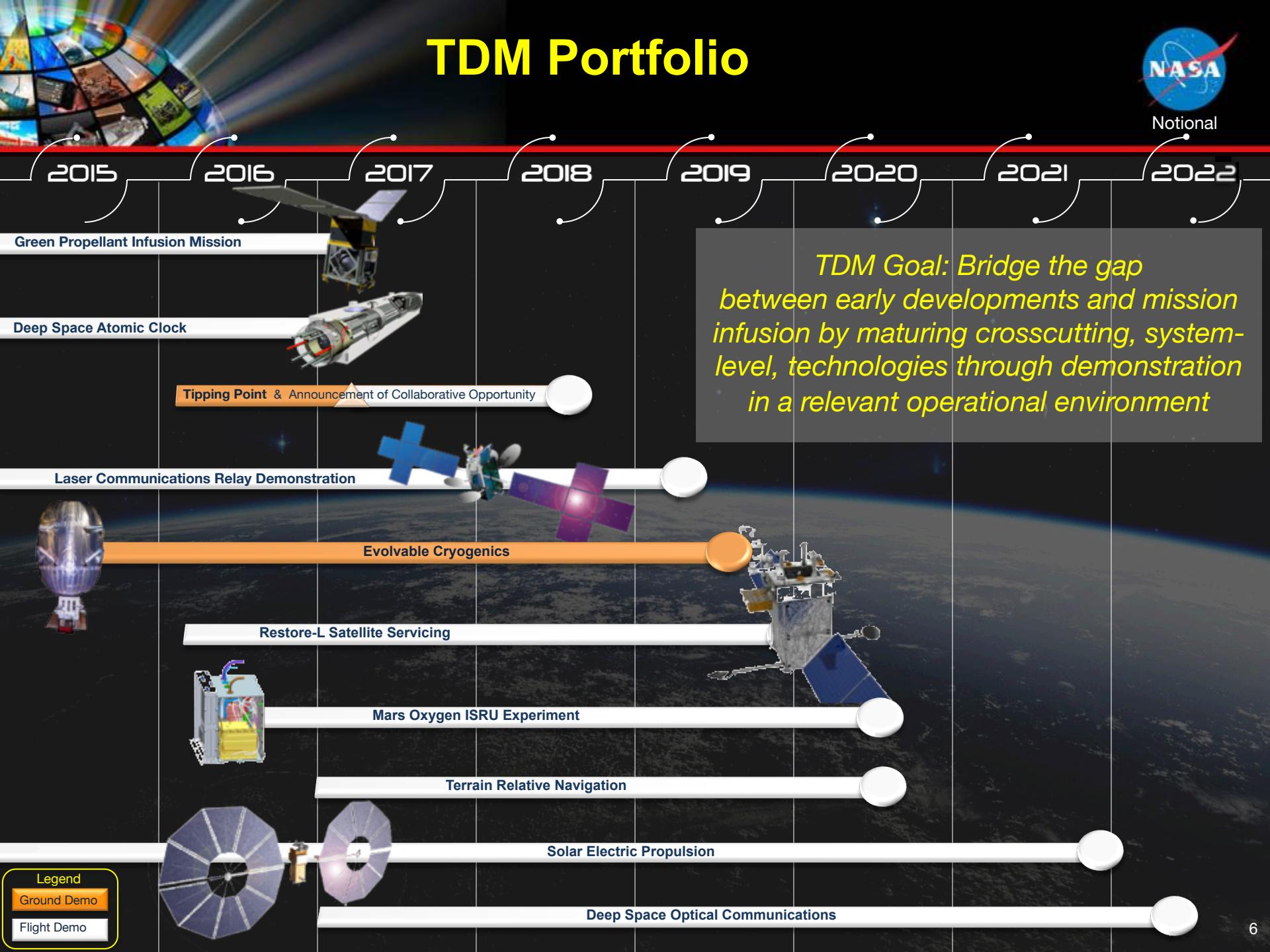
Game Changing Development Program

High TRL

Technology Demonstrations

Technology Demonstration Missions Program

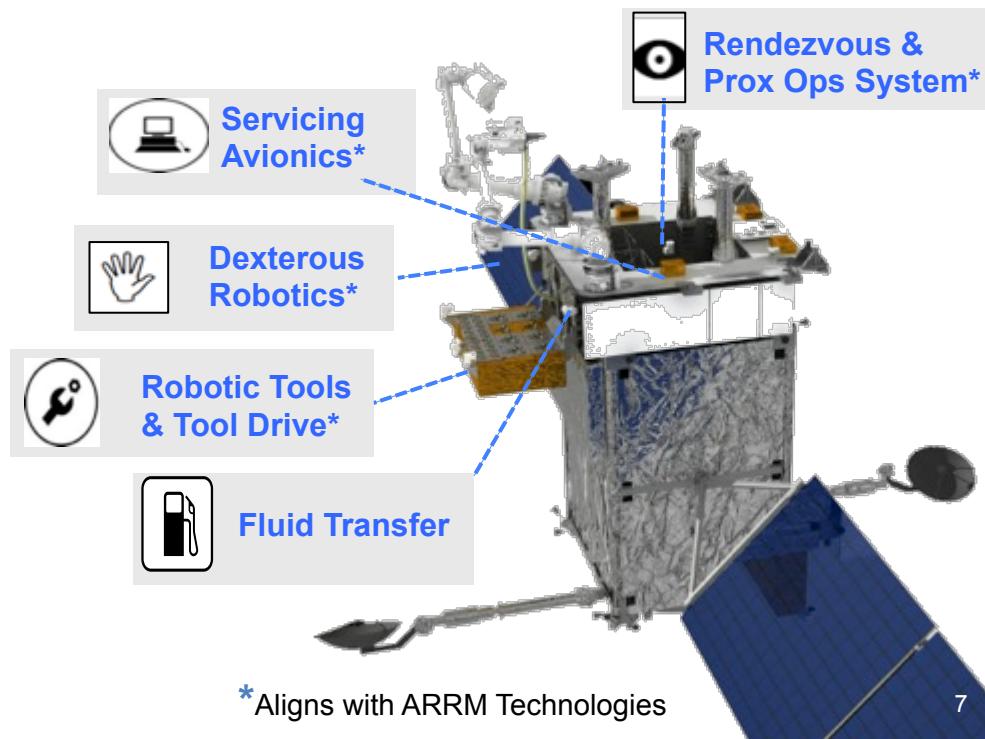
TECHNOLOGY PIPELINE



FY 2017 Budget Request

Budget Authority (\$M)		FY 2015	FY 2016	Notional Plan				
			Initial Op Plan	FY 2017	FY 2018	FY 2019	FY 2020	FY 2021
Agency Technology & Innovation (AT&I)		\$31.3	\$31.5	\$34.3	\$35.0	\$35.7	\$36.4	\$37.1
SBIR & STTR		\$190.7	\$200.9	\$213.0	\$213.2	\$213.5	\$213.8	\$213.8
Space Technology Research & Development (STR&D)		\$378.3	\$451.0	\$579.4	\$456.2	\$469.3	\$482.7	\$496.6
S T R & D	Early Stage	\$43.6	\$51.0	\$82.4	\$83.8	\$85.2	\$86.7	\$88.2
	Commerical Partnerships	\$14.2	\$19.9	\$22.9	\$23.3	\$23.8	\$24.3	\$24.8
	Game Changing Development (GCD)	\$129.3	\$123.8	\$158.4	\$111.1	\$117.6	\$124.3	\$131.2
	Technology Demonstration Missions (TDM)	\$172.0	\$236.0	\$288.9	\$210.5	\$214.8	\$219.0	\$223.4
	<i>In-Space Robotic Servicing (ISRS) / Restore-L</i>	\$10.0	\$133.0	\$130.0	\$66.3	\$67.6	\$69.0	\$70.4
	<i>All other TDM Projects</i>	\$162.0	\$103.0	\$158.9	\$144.2	\$147.1	\$150.1	\$153.1
	Small Spacecraft Technologies (SST)	\$19.3	\$20.3	\$26.8	\$27.3	\$27.9	\$28.4	\$29.0
TOTAL SPACE TECHNOLOGY		\$600.3	\$683.4	\$826.7	\$704.4	\$718.5	\$732.9	\$747.5

Restore-L Satellite Servicing


NASA's Restore-L is a groundbreaking mission that uses **robotic technology** to **rendezvous** with and **refuel** a government-owned satellite in low Earth orbit, autonomously and via remote control.

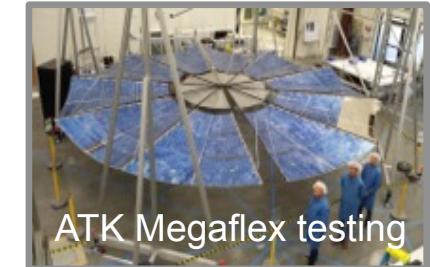
The primary mission objective is to **advance technologies** critical for human and commercial spaceflight infrastructure including the following to operational status:

- autonomous rendezvous capability with a satellite not designed for servicing
- robotic capture and servicing
- non-cooperative refueling

Preliminary schedule:

- FY 2016: MCR and KDP-A
- FY 2017: SRR/MDR and KDP-B
- FY 2019: LRD (notional)

*Aligns with ARRM Technologies

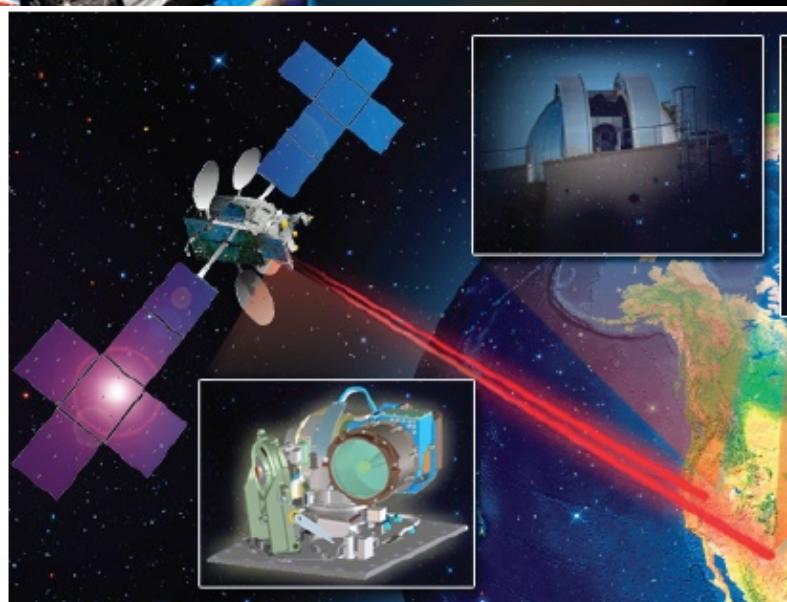


Solar Electric Propulsion

Developing & demonstrating SEP components for NASA exploration missions and commercial applications

- Reduced mass and more efficient packaging of solar arrays for more capable and affordable commercial satellites (2x lighter and 4 times less stowed volume for amount of electricity produced than commercially available arrays)
- High-power Hall thrusters with magnetic shielding for all-electric commercial satellites and other applications (2.5x power level of highest powered electric thrusters in use; withstands 4x more radiation exposure)
- SEP technology demonstration is planned for the Asteroid Redirect Robotic Mission (ARRM)

Electric Thrusters and Power Processing Unit (PPU)


- Demonstrated full performance compatibility between thruster and PPUs
- Electric Propulsion System Procurement RFP released in July 2015
- ***NASA selected Aerojet Rocketdyne to design and develop an advanced electric propulsion system, April 2016***

Infusion Successes:

- Space Systems Loral signed agreement with DSS for STMD developed ROSA solar arrays on future commercial communication satellites (CDR completed; targeting GEO satellites launching in 2018)
- Orbital ATK flew Ultraflex array on Cygnus cargo spacecraft in December 2015 that employed STMD-sponsored technology advancements

Laser Communication Relay Demonstration

Demo Description (STMD/HEOMD):

- Two-year flight demonstration to advance optical communications technology toward infusion into operational systems while growing the capabilities of industry (FY2019 Launch Readiness Date)

Objectives:

- Demonstrate bidirectional optical communication between GEO and Earth
- Measure and characterize system performance over a variety of conditions
- Provide on-orbit capability for test and demonstration of standards for optical relay communications
- Transfer laser communication technology to industry for future missions
- DoD Partnership to add encryption capability

Anticipated Benefits:

- A reliable, capable, cost effective optical communication technology for infusion into future operational systems

Anticipated Mission Use:

- Next-gen TDRS and near-earth science; ISS & human spaceflight
- LCRD project is taking major steps toward commercialization and infusion into industry

GPIM & DSAC Missions

Green Propellant Infusion Mission (GPIM)

GPIM is a multi-partner effort between NASA and industry that will demonstrate dramatic improvements to overall propellant efficiency while reducing toxic handling concerns

Objectives:

- Demonstrate the on-orbit performance of a complete AF-M315E propulsion system suitable for an ESPA-class spacecraft
- Demonstrate AF-M315E steady-state performance of delivered volumetric impulse at least 40% greater than hydrazine

Team:

- Ball Aerospace – Build spacecraft & host payload
- Aerojet – Green Propellant Propulsion Subsystem
- NASA – Modeling & Testing
- AFRL – Propellant Loading
- AF SMC – Ground Stations & Operations

Deep Space Atomic Clock (DSAC)

DSAC is a NASA JPL-led effort that will validate a miniaturized, ultra-precise mercury-ion atomic clock that is 100 times more stable than today's best navigation clocks.

Objectives:

- Develop advanced prototype (Demo Unit) mercury-ion atomic clock for navigation/science in deep space & Earth
- Focus on maturing the new technology – ion trap and optical systems – other system components (i.e. payload controllers, USO, GPS) size, weight, power (SWaP) dependent on resources/schedule

Team:

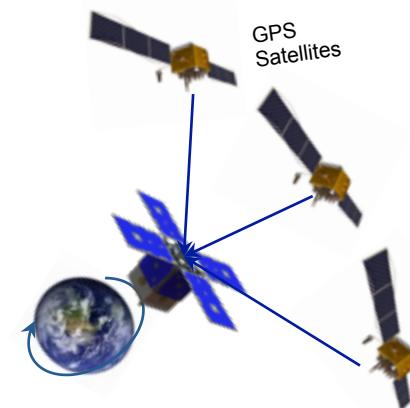
- JPL – Build clock system & operate payload
- Surrey – Host mission provider; integrate & operate OTB
- Moog Broad Reach – GPS Receiver
- Frequency Electronics – Ultra Stable Oscillator
- Laboratory for Atmospheric Space Physics – UV Detector

Mission Launch

Launch Provider

USAF STP-2

Rocket Vendor

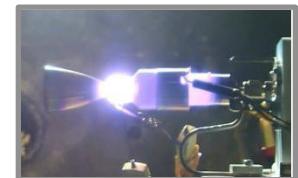

SpaceX Falcon Heavy

Launch Site

KSC; Launch Complex-39A

Launch Date

1st Quarter – CY 2017



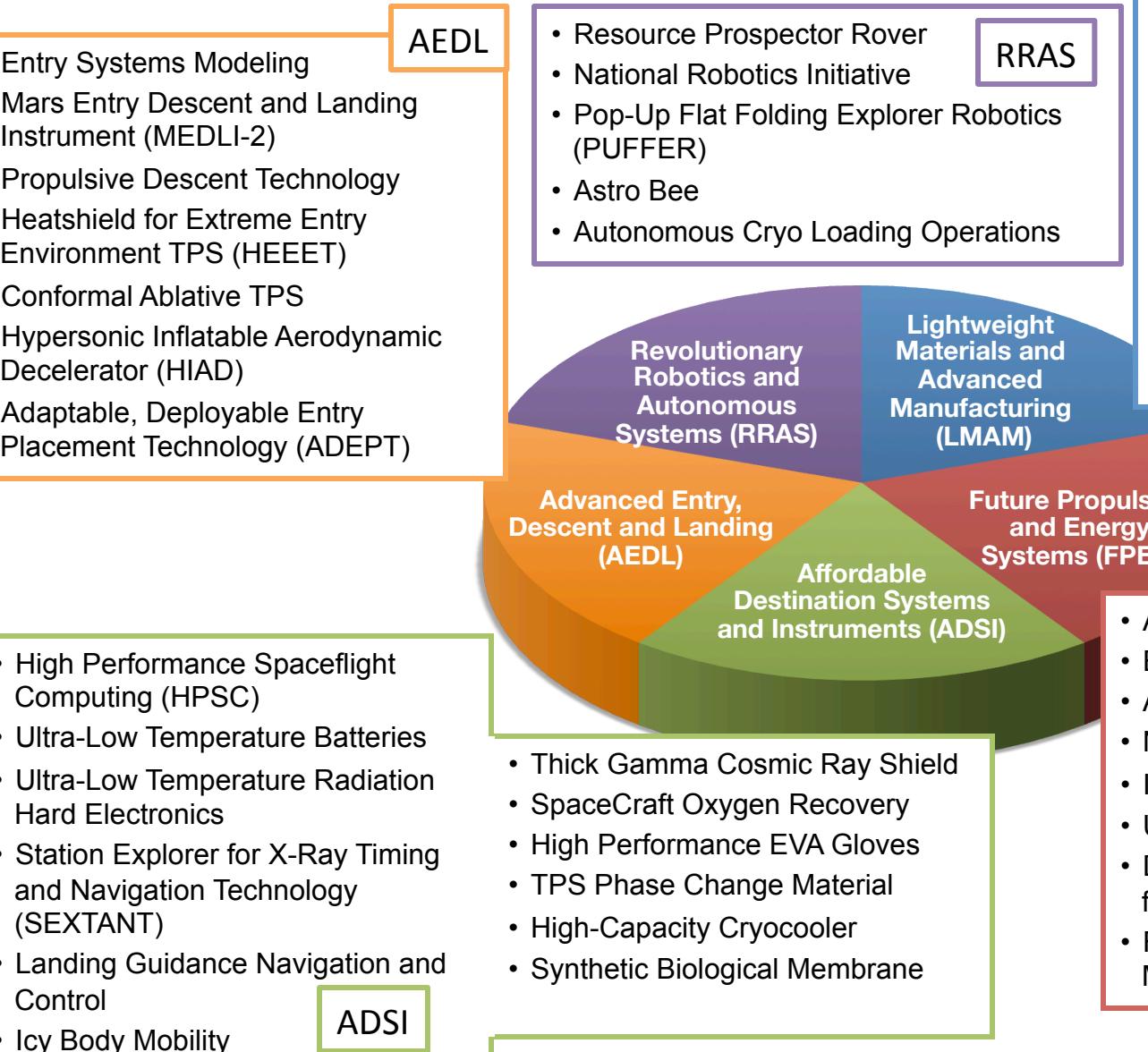
STMD Public-Private Partnerships

STMD continues to foster partnerships with the commercial space sector for expanding capabilities and opportunities in space.

Objective:

Deliver critical space technologies needed for future missions by leveraging previous investment by U.S. industry and providing new opportunities for collaboration that accelerate development and utilization.

Market Research Revealed Two Categories of Industry-led Space Technologies:

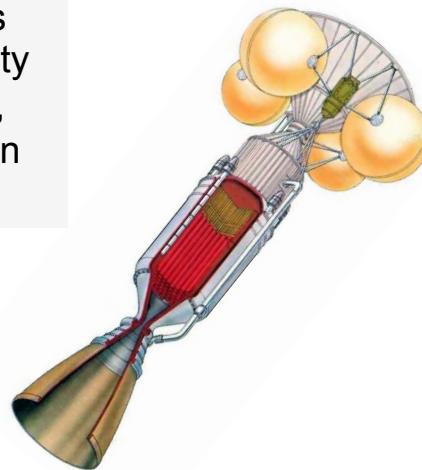

- Those at a “tipping point”, where a final demonstration or validation would result in rapid adoption and utilization -- “STMD Tipping Point Solicitation”
- Those that could directly benefit from NASA’s unique experience, expertise, facilities -- “STMD Announcement of Collaboration Opportunity (ACO)”

Results:

- Both Tipping Point and ACO were released **May 2015**
- Topics included: Robotic In-Space Manufacturing, Small S/C Systems, Remote Sensing Instrumentation, Advanced Thermal Protection, Launch Systems Development
- **Nine** Tipping Point and **Thirteen** ACO industry-led projects selected **November 2015**
- Issue new Tipping Point solicitation in **late FY16** and ACO in **FY17**

Game Changing Development Program*

* Not a complete project list


Nuclear Thermal Propulsion (NTP)

Goal: Address critical challenges relevant to establishing the viability of NTP as a faster, more efficient, and more affordable alternative on deep space exploration missions

Why NTP?

- Faster transit times and reduced crew radiation hazards
- Reduced architectural mass and fewer SLS launches
- Decreased sensitivity to mission departure and return dates

Key GCD Project Deliverables (FY16-18)

- Scale up production of isotopically pure tungsten
- Design, develop, and manufacture low enriched uranium fuel element segments suitable for testing
 - Goal to enable use of LEU for space reactors
- NTP engine design utilizing LEU fuel elements
- System-level assessment and cost estimate for a potential future NTP development and demonstration effort to assess NTP viability for human exploration transportation systems

Path to fielding an NTP system that is within NASA's resources could depend on a shift from highly enriched uranium to low enriched uranium (LEU) fuel elements

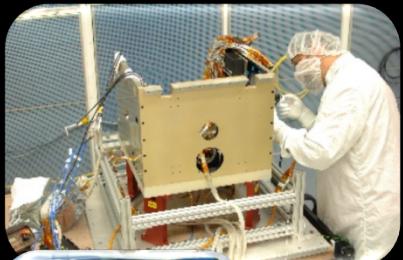
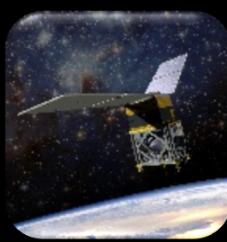
7-hole W-UO₂ in CFEET and post testing up to 2500 C

HIP can assembly for pure W samples prior to welding

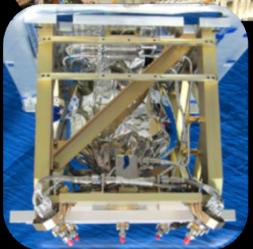
NTP Development Challenges Being Addressed

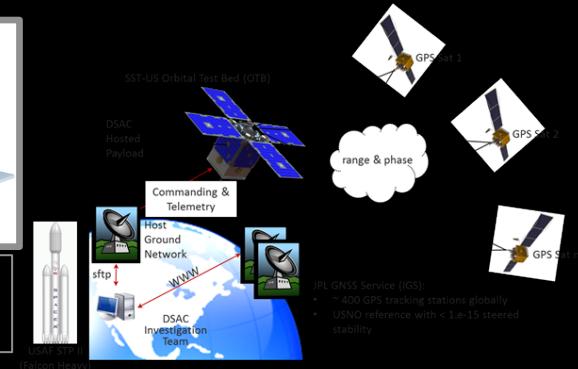
- Reactor fuel design that achieves higher temperature while minimizing erosion and fission product release
- Focus on establishing an NTP design based around LEU fuel elements to enable an affordable NTP system
- Mature critical technologies associated with LEU fuel element materials and manufacturing
- Evaluate the implications of using LEU on NTP engine design to establish that the engine can affordably meet the NTP performance requirements

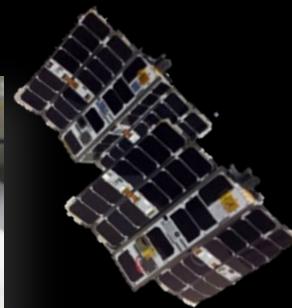
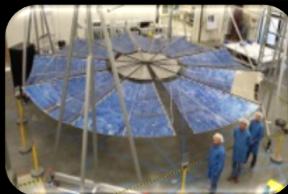
Partnering with Universities to Solve the Nation's Challenges



U.S. Universities have been **very successful** in responding to STMD's competitive solicitations

- STMD-funded university space technology research spans the entire roadmap space
- More than **135** U.S. universities have led (or are *STTR partners on*) more than **900** awards since 2011
- In addition, there are many other partnerships with other universities, NASA Centers and commercial contractors
- **FY 2017** request will enable and increase in awards to academia.


Program	# awards	# University-led awards	Upcoming Opportunities
Space Technology Research Grants	373	373	<ul style="list-style-type: none">• Early Career Faculty• Early Stage Innovations• NASA Space Technology Research Fellowships <i>Annually</i>
NIAC	117	38	<ul style="list-style-type: none">• NIAC Phase I• NIAC Phase II <i>Annually</i>
Game Changing Technology Dev	50	18	Various topics released as Appendices to SpaceTech-REDDI <i>Annually</i>
Small Spacecraft Technology	34	21	Smallsat Technology Partnerships Cooperative Agreement Notice (released as Appendix to SpaceTech-REDDI) <i>Annually</i>
Flight Opportunities	139	67	Tech advancement utilizing suborbital flight opportunities – NRA to U.S. Universities, non-profits and industry are planned. <i>Twice Annually</i>
STTR	263	246 w/ univ partners	<i>Annual STTR solicitation</i>
Centennial Challenges	4 Challenges (2 university-run)	40 teams (9 univ-led, 2 univ-led winners)	<ul style="list-style-type: none">• <i>One or more challenges annually</i>• Challenge competitions with a procurement track to fund university teams via grants

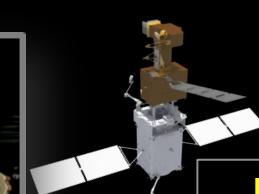
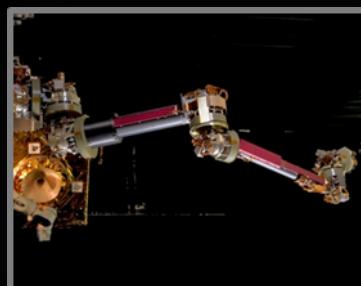
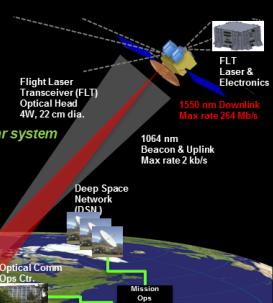

Key Milestones in 2016-17



**Green
Propellant
Infusion
Mission**

**Deep Space
Atomic Clock**

**Solar
Electric
Propulsion**

Small Spacecraft Technology

**Laser Communication
Relay Demonstration**

**Deep-Space Optical
Communications (DSOC)**

Virtual presence throughout the solar system

Ground Laser Receiver (GLR)
Palomar Mtn., CA
1m OCTI, Telescope (5 kW)

**Restore L
Satellite
Servicing**

Technology Drives Exploration