Update Topics

• Budget
• Mission
• Research & Analysis
• International Partnerships
• FACA
• Division Assignment Changes
Budget Update
Heliophysics Budget

<table>
<thead>
<tr>
<th>Category</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research</td>
<td>68,658</td>
<td>11%</td>
</tr>
<tr>
<td>Development</td>
<td>352,466</td>
<td>54%</td>
</tr>
<tr>
<td>Prime (MMS)</td>
<td>30,138</td>
<td>5%</td>
</tr>
<tr>
<td>Operating Missions</td>
<td>78,170</td>
<td>12%</td>
</tr>
<tr>
<td>Management and Other</td>
<td>26,424</td>
<td>4%</td>
</tr>
<tr>
<td>Data Systems</td>
<td>19,890</td>
<td>3%</td>
</tr>
<tr>
<td>Suborbital</td>
<td>71,420</td>
<td>11%</td>
</tr>
<tr>
<td>Total</td>
<td>647,166</td>
<td>100%</td>
</tr>
</tbody>
</table>
Heliophysics Budget

<table>
<thead>
<tr>
<th>$M</th>
<th>FY15</th>
<th>FY16 Enacted</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliophysics</td>
<td>636.1</td>
<td>647.2</td>
<td>698.7</td>
<td>684.0</td>
<td>698.3</td>
<td>714.8</td>
<td>723.9</td>
</tr>
</tbody>
</table>

• Missions in development fully funded
 - Space Environments Testbed-1 (SET-1) – NET September 2017
 - Ionospheric CONnection Explorer (ICON) – October 2017
 - Global Observation of the Limb and Disk (GOLD) – April 2018
 - Solar Probe Plus (SPP) – July 2018
 - Solar Orbiter Collaboration (SOC) – October 2018

• Future mission funding
 - Release Explorer mission AO/MO in FY16
 - Release STP-5 (IMAP) mission AO/MO in FY17
 - Release LWS-7 (GDC) mission AO/MO in FY18

• OMB Mandatory Spending (FY2017 only):
 - +$10.0M for Heliophysics/Cubesat program
 - +$10.0M for Heliophysics/Space weather research in support of the Space Weather Action Plan
 - +$5.0M for Research & Analysis
Mission Update
Heliophysics Program 2015-2024

Solar/Terrestrial Probes
- Magnetospheric Multiscale (MMS) March 2015
- Space Environment Testbeds (SET) NET September 2017
- Solar Probe Plus July 2018
- Solar Orbiter Collaboration (with ESA) October 2018
- Interstellar Mapping Probe (IMAP) (STP #5) 2023*
- Heliophysics MO 2023*

Living With a Star
- Geospace Dynamics Constellation (GDC)(LWS #4) 2024*
- Ionospheric Connection Explorer (ICON) October 2017
- Global-scale Observations of the Limb and Disk (GOLD) April 2018
- Heliophysics MO 2020*
- Heliophysics SMEX 2022*
- Heliophysics MO 2022*
- Heliophysics MIDE 2024*

Explorers
- Interstellar Mapping Probe (IMAP) (STP #5) 2023*
- Heliophysics MO 2023*
- Heliophysics MIDE 2024*

Research Program
- Solar/Heliospheric: November 2016
- Solar/Heliospheric – December 2016
- Solar/Heliospheric – December (tbd) 2016
- Ongoing

*Notional

Heliophysics Missions
Astrophysics Missions
Planetary Missions
<table>
<thead>
<tr>
<th>Mission</th>
<th>Launch</th>
<th>Phase</th>
<th>Extension to (*)</th>
<th>M-3</th>
<th>M-2</th>
<th>M-1</th>
<th>Cur. M.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEREO</td>
<td>10/25/2006</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STERO-B contacted (8/21) and recovery under way.</td>
</tr>
<tr>
<td>THEMIS+Artemis</td>
<td>2/17/2007</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE</td>
<td>8/27/1997</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHESSI</td>
<td>2/5/2002</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHO</td>
<td>12/2/1995</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMED</td>
<td>12/7/2001</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voyager 1 + 2</td>
<td>8/20/1977</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBEX</td>
<td>10/19/2008</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>on 9/1 the Flight Comp had a reboot: recovered 9/4. SEU likely</td>
</tr>
<tr>
<td>Wind</td>
<td>11/1/1994</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDO</td>
<td>2/11/2010</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Allen</td>
<td>8/30/2012</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRIS</td>
<td>6/27/2013</td>
<td>Extended</td>
<td>9/30/2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMS</td>
<td>3/12/2015</td>
<td>Prime</td>
<td>9/1/2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maneuvers performed on 8/31 & 9/1, resizing from 40 km to 10 km.</td>
</tr>
</tbody>
</table>

(*) Extended mission end dates subject to upcoming Senior Review. (+) Terminates at date.
STEREO B Recovery Attempt Status

- First contact was made on 20 August 2016
- Declared spacecraft emergency and had repeated contacts over the next two weeks
 - Ascertain Spacecraft status
 - Disable autonomy
 - Charge Battery – Partially damaged (2 cells) – max volts ~26V
 - Warm up propulsion system
- Attempted autonomous recovery on 7 September 2016
 - Propulsion system warm – no pressure however
 - Battery charged sufficiently
 - Bad gyro’s masked
 - Results
 - Spacecraft reset, autonomy rules fired, ST locked, momentum dump attempted
 - Momentum decreased some but not as much as expected – 2 wheels saturated
 - Did not regain attitude control or end up continuously power positive.
 - Intermittent contact; Attempts will continue to mitigate further spacecraft degradation

Current orientation supports some solar array input, RF communications only supports uplink of short commands to an LGA. The battery charge rate is C/10 and voltage controller to 12. Power switching boards are on, nearly all switched loads off. The TWTA is in standby, IEM (avionics), PDU 1553 bus, and propulsion tank primary heaters are on. EA mode is enabled.

Recovery attempts will continue until mid-October when BEHIND will start moving into an unfavorable alignment on getting sunlight onto the solar panels. It is anticipated that we will continue monthly contacts until June of 2017. At that point we will suspend attempts until the summer of 2020, when the alignment becomes more favorable.
Recent Accomplishments:
• Payload lift and mechanical mate completed.
• Integration of payload completed successfully.
• Orbital Debris Assessment Report and waiver have been approved through HQ OSMA and in signature cycle at SMD.
• Completed KDP-D DPMC on 26 August.

Upcoming Milestones/Events:
• Observatory PER – TBD Oct 2016
• Observatory PreShip Review – 27 Feb 2017
• LRD – October 2017

Issues/Concerns:
• ICON Master Avionics Unit (IMAU) failure during Comprehensive Performance Testing is under investigation.
Recent Accomplishments:
• Successfully completed all environmental testing

Ongoing:
• Post-Environmental calibration of both channels

Future Activities:
• Packaging and shipment
• Final operational tests with spacecraft

Upcoming Milestones/Events:
• Pre-Ship Review – 29 November 2016
• Instrument delivery to Airbus – NLT 15 January 2017
• Launch Readiness Date - April 2018

Issues/Concerns:
• None
Recent Accomplishments

- Integration and testing ongoing at APL
 - Flight Model Power System Electronics (PSE) successfully integrated onto the spacecraft
 - power-up, commanding and telemetry receipt successful
 - Completed electrical integration of the Flight Model Radios
 - Commanding and telemetry receipt from Flight Radio A and B successful

Upcoming Milestones/Events

- PER: 6 October 2017
- PSR: 8 March 2018
- LRD: 31 July 2018

Issues/Concerns

- Potential delay in SWEAP instrument delivery due to Smithsonian Astrophysics Observatory (SAO) critical skills risk
Recent Accomplishments:

• Heavy Ion Sensor (HIS) instrument Detector Section (DS) was successfully integrated with the flight Main Electronics Box (MEB).

• Vibration test readiness review for the Solar Orbiter Heliospheric Imager (SoloHI) is complete.

Upcoming Milestones/Events:

• HIS PER 18 October 2016
• SoloHI PSR 6 November 2016
• HIS PSR 4 January 2017

Issues/Concerns:

• ESA Mission Delta-CDR action item closeout has been delayed to mid-October (one month slip).
Research & Analysis
HPD 2015 ROSES Complete

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>STEP 1 PROPOSALS</th>
<th>STEP 2 PROPOSALS</th>
<th>AWARDS</th>
<th>YEAR 1 ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2 H-SR</td>
<td>343</td>
<td>251</td>
<td>46</td>
<td>5.5</td>
</tr>
<tr>
<td>B.3 H-TIDeS</td>
<td>135</td>
<td>106</td>
<td>12</td>
<td>4.7</td>
</tr>
<tr>
<td>B.4 H-GI</td>
<td>204</td>
<td>149</td>
<td>22</td>
<td>2.9</td>
</tr>
<tr>
<td>B.6 H-LWS</td>
<td>103</td>
<td>92</td>
<td>20</td>
<td>3.5</td>
</tr>
<tr>
<td>B.7 H-IDEE</td>
<td>15</td>
<td>14</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTALS</td>
<td>799</td>
<td>612</td>
<td>108</td>
<td>17.1</td>
</tr>
</tbody>
</table>

ROSES15 Average Success Rate (vs. Full Proposals): 18%

Diagram Description:

- **Full Proposals**
- **Cancelled GI**
- **Required Step-1 Proposals**

- **2008**
 - Full Proposals: 400
 - Required Step-1 Proposals: 300
 - Selected/Submitted: 100
- **2009**
 - Full Proposals: 450
 - Required Step-1 Proposals: 350
 - Selected/Submitted: 250
- **2010**
 - Full Proposals: 350
 - Required Step-1 Proposals: 250
 - Selected/Submitted: 150
- **2011**
 - Full Proposals: 500
 - Required Step-1 Proposals: 300
 - Selected/Submitted: 200
- **2012**
 - Full Proposals: 400
 - Required Step-1 Proposals: 200
 - Selected/Submitted: 100
- **2013**
 - Full Proposals: 500
 - Required Step-1 Proposals: 300
 - Selected/Submitted: 200
- **2014**
 - Full Proposals: 450
 - Required Step-1 Proposals: 350
 - Selected/Submitted: 200
- **2015**
 - Full Proposals: 500
 - Required Step-1 Proposals: 350
 - Selected/Submitted: 200
<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>STEP 1 PROPOSALS (Due Date)</th>
<th>STEP 2 PROPOSALS (Due Date)</th>
<th>AWARDS (Expected)</th>
<th>YEAR 1 ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2 H-SR</td>
<td>235</td>
<td>212</td>
<td>(17-20)</td>
<td>($4M)</td>
</tr>
<tr>
<td>B.3 H-TIDeS</td>
<td>87</td>
<td>71</td>
<td>(12)</td>
<td>($4.75M)</td>
</tr>
<tr>
<td>B.4 H-GI Open</td>
<td>197</td>
<td>181</td>
<td>33</td>
<td>$3.0M</td>
</tr>
<tr>
<td>B.5 H-GCR TMS</td>
<td>- (10/13)</td>
<td>- (11/18)</td>
<td>(8-10)</td>
<td>($4M)</td>
</tr>
<tr>
<td>B.6 H-LWS</td>
<td>- (10/7)</td>
<td>- (11/18)</td>
<td>(15-20)</td>
<td>($3.75M)</td>
</tr>
<tr>
<td>B.7 H-DEE</td>
<td>28</td>
<td>24</td>
<td>(10-12)</td>
<td>($1M)</td>
</tr>
<tr>
<td>B.8 H-GI MMS</td>
<td>- (Nov.)</td>
<td>- (Jan.)</td>
<td>(TBD)</td>
<td>(TBD)</td>
</tr>
<tr>
<td>B.9 H-GCR SC</td>
<td>PPD ROSES17</td>
<td>PPD ROSES17</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B.10 H-USPI</td>
<td>7</td>
<td>- (10/14)</td>
<td>(2)</td>
<td>($0.4M)</td>
</tr>
<tr>
<td>E.5 ISE</td>
<td>(10/28)</td>
<td>(11/30)</td>
<td>(12)</td>
<td>(0.8M)</td>
</tr>
</tbody>
</table>
The NASA Research Announcement (NRA) for the total solar eclipse in August 2017 was released on 28 September. The primary purpose of the NRA is to support the development of new research or the enhancement of existing research applied to the 2017 eclipse. Building on existing partnerships and the use of interdisciplinary or citizen science approaches is encouraged. Proposals must demonstrate links to the 2017 solar eclipse. The two-step proposal process requires Step-1 proposals to be submitted by 27 October, followed by Step-2 proposals due by 30 November. The total award value is approximately $0.8M (Heliophysics); this may be supplemented by other SMD Divisions if applicable proposals are received and the panel recommends an award.
Sounding Rockets Schedule

Mission Manifest: June 2016 – May 2017

<table>
<thead>
<tr>
<th>Mission Title</th>
<th>Launch Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOODS SDO-EVE @ WS</td>
<td>Wed 6/1/16</td>
</tr>
<tr>
<td>KOEHLER ROCKON-RockSAT-C @ WI</td>
<td>Fri 6/24/16</td>
</tr>
<tr>
<td>CIROTA HIC @ WS</td>
<td>Wed 7/27/16</td>
</tr>
<tr>
<td>KOEHLER RockSAT-X @ WI</td>
<td>Wed 8/17/16</td>
</tr>
<tr>
<td>HASSLER RAISE @ WS</td>
<td>Fri 11/4/16</td>
</tr>
<tr>
<td>CHISLEY ZOMBIE @ WS</td>
<td>Sun 12/4/16</td>
</tr>
<tr>
<td>HESH SUBTEC 7 @ WI</td>
<td>Tue 12/13/16</td>
</tr>
<tr>
<td>LARSEN AZURE @ FB</td>
<td>Wed 1/18/17</td>
</tr>
<tr>
<td>BAILEY POLARNOX @ FB</td>
<td>Thu 1/19/17</td>
</tr>
<tr>
<td>PFAFF JETS @ FB</td>
<td>Mon 2/13/17</td>
</tr>
<tr>
<td>LYNCH ISINGLASS @ FB</td>
<td>Mon 2/13/17</td>
</tr>
<tr>
<td>PFAFF JETS @ FB</td>
<td>Mon 2/13/17</td>
</tr>
<tr>
<td>MILLER @ WI</td>
<td>Mon 2/27/17</td>
</tr>
<tr>
<td>TUN HERSCHEL @ WS</td>
<td>Wed 3/8/17</td>
</tr>
<tr>
<td>HALL @ WI</td>
<td>Thu 4/13/17</td>
</tr>
<tr>
<td>CHISLEY ZOMBIE @ WS</td>
<td>Sat 5/20/17</td>
</tr>
<tr>
<td>CHISLEY ZOMBIE @ WS</td>
<td>Sat 5/20/17</td>
</tr>
</tbody>
</table>
International Partnerships Update
International Collaboration Update

• Korea Astronomy and Space Science Institute (KASI)
 – First working group meeting held at NASA HQ on 21 September
 – Potential near-term collaboration topics discussed

• NASA/Japan Aerospace Exploration Agency (JAXA)/European Space Agency (ESA)
 – Multilateral science objectives team (SOT) established to study the next generation solar physics mission using the Solar-C concept as point of departure
 – 3 co-chairs (NASA, JAXA, ESA)
 – 12 members from the US, Japan and Europe (4 each)
 – Call for community input to science objectives released
 – Draft report due in 9 months (April 2017); final report due in July 2017

• Indian Space Research Organisation (ISRO)
 – Working group charter approved by NASA and ISRO
 – Kickoff meeting to be scheduled
Federal Advisory Committee Act (FACA)
Evolution of the Heliophysics Subcommittee

• NASA has decided to apply for FACA charters for the four science advisory subcommittees, including the Heliophysics Subcommittee.

• Many community-based studies (e.g., Senior Reviews, Science and Technology Definition Teams) require a chartered Federal Advisory Committee to which to report.

• Once chartered, this Heliophysics Subcommittee (HPS) will be replaced by the Heliophysics Advisory Committee (HPAC).
 – All current HPS members will be appointed to the HPAC.
 – Meeting schedule and member expectations will be unchanged.

• The Heliophysics Advisory Committee will report to the Director of the Heliophysics Division.

• The HPAC Chair will continue to serve as a member of the NAC Science Committee.

• Once the Heliophysics Advisory Committee is chartered, then the Director of the Heliophysics Division will establish subordinate groups, such as:
 – Senior Reviews
 – Future Science and Technology Definition Teams (STDT) (e.g., GDC)
Division Assignment Updates
Heliophysics Division - Science Mission Directorate

Director
Steve Clarke

Deputy Director
Peg Luce

Chief Scientist – Vacant

Resource Management
Ralph Beaty*
Jennifer Holt*

Secretary: Gloria Stewart
Admin Asst: Aaluk Edwardson*
Program Support Specialist: Jackie Mackall

Programs / Missions

Living With a Star (LWS)
Program
Science
Elsayed Talaat* Joe Smith
SET
Jeff Morrill* Alan Zide*
SOC
Jeff Morrill* Joe Smith/Alan Zide*
SPP
Elsayed Talaat Joe Smith

Solar Terrestrial Probes (STP)
Program
IMAP
Mona Kessel Bill Stabnow

Explorers
Program
ICON
Jeff Morrill* Willis Jenkins
GOLD
Elsayed Talaat Bill Stabnow
EXP-XX
TBD TBD

Sounding Rockets & Range
Program
Dan Moses George Albright

Operating Missions

ACE
Arik Posner
AIM
Elsayed Talaat
Geotail
Mona Kessel
Hinode
TBD
IBEX
Arik Posner
IRIS
Lika Guhathakurta
MMS
Mona Kessel
RHESSI
TBD
SDO
Lika Guhathakurta
SOHO
Lika Guhathakurta
STEREO
Lika Guhathakurta
THEMIS
Elsayed Talaat
TIMED
Elsayed Talaat
TWINS
Mona Kessel
Van Allen
Mona Kessel
Voyager 1 & 2
Arik Posner
Wind
Arik Posner

Cross Cutting

Education Lead: Lika Guhathakurta
Career Enhancement for New Technologists and Scientists (CENTS): Liz MacDonald*
Division Public Affairs: Dwayne Brown
Emerging Partnerships Manager: Lika Guhathakurta
Space Weather Lead: Elsayed Talaat
Chief Technologist: Dan Moses
 • SMD Cubesat Implementation Program (SCIP)
Policy Analyst: Mariel Borowitz/Becky McCauley Rench *
Interagency/International Relations: Jake Parsley

Heliophysics Research

Program Manager: Arik Posner
Program Support: Guan Le, Terry Kucera, EJ Summerlin*, Katya Verner*
Grand Challenge (GCR): Mona Kessel
 • Lika Guhathakurta – Heliophysics Science Centers
Guest Investigator (GI): EJ Summerlin*
Infrastructure & Data Environment Enhancements (IDEE): Jeff Hayes
Supporting Research (SR): Arik Posner (SH)/Elsayed Talaat (Mag/ITM)
TIDES: Dan Moses/Liz MacDonald* (Deputy Program Scientist)

* Member of the Resources Mgmt Division or Strategic Integration and Mgmt Division
* Detailee, IPA, or contractor
Thank You
Backup
New Advances in Magnetic Reconnection at the electron-scale level using Heliophysics MMS Data

Dr. Jim Burch, the PI for MMS, and Dr. Tai Phan, a Senior Fellow with the Space Sciences Laboratory, recently published a paper in the Geophysical Research Letters using Magnetospheric Multi-Scale mission data to introduce a new magnetic reconnection event near an X-line of a reconnecting magnetopause region.

Past experimental efforts have advanced our understanding of ion-scale physics, but more data on the electron-scale processes that cause magnetic reconnection is needed.

This December 2015 event occurred in the dayside magnetopause, the boundary region between Earth’s magnetosphere and the solar wind.

The two magnetic fields involved in this event were at an angle near 45°, creating strong antiparallel components in the plane of reconnection.

There was also an out-of-plane magnetic field component, which is known as the guide field. The effects of a guide field on magnetic reconnection has been an active topic of theoretical research.

A second scan of the dayside magnetopause will begin this month, September 2016. A study of more events is needed to further understand magnetic reconnection at this electron-scale level.
Heliophysics Science Highlights: September 2016

Heliophysics IBEX Mission Delivers Important Data on our Boundary with Interstellar Space to our Doorstep

- The NASA Heliophysics Interstellar Boundary Explorer (IBEX) mission, launched in 2008, measures particles at the heliopause to better understand this boundary and in which direction our solar system is traveling through space.

- Asymmetries along the boundary, and the changing activity of the sun, affect the flow of galactic cosmic radiation into our solar system. Understanding more about these asymmetries is important as this radiation has the potential to impact Earth’s atmospheric layers and pose hazards to human space exploration.

- In a paper soon to be published in the Astrophysical Journal, Dr. Nathan Schwadron of the University of New Hampshire and an international team of co-authors confirm a suspected asymmetry at the nose of the heliosphere, which is the area containing our solar system, the solar wind and the entire solar magnetic field.

- The data on Interstellar Oxygen nearly “tricked” scientists into thinking that the heliosphere was traveling more southward than it really is; combining this data with data on Interstellar Helium in this area scientists were able to see a more accurate picture.
MinXSS CubeSat Fills Important Spectral Gap in Solar Irradiance Measurements

- MinXSS, the first CubeSat ever launched for the Science Mission Directorate, has been collecting data since its deployment from the International Space Station on May 16th of this year.
- MinXSS data fills an important spectral gap in solar irradiance measurements, collecting soft X-ray (SXR) data at spectral resolutions we haven’t obtained before.
- By July, it had already met its minimum mission science criteria for science data and observations, seeing over 7 M-class solar flares and over 40 C-class flares.
- The minimum mission science criteria for MinXSS is to collect measurements of solar full-disk irradiance in SXR with a spectral resolution better than 1 nanometer, to sustain 30% accuracy for a minimum of one month, and to observe at least 6 medium-sized flares.
- MinXSS also won the 2016 AIAA Small Satellite Mission of the Year Award in August.

Student Outreach RockSat-X Launched with Interesting Student Payloads Last Month

- The sixth flight of a RockSat-X education payload launched on a suborbital Rocket from the Wallops Flight Facility in Virginia last month.
- RockSat-X is an educational mission, providing students with an opportunity to learn from and engage in the process of building experiments for a scientific payload.
- The payload consisted of a broad range of interesting student-developed experiments from eleven different colleges.
- Although the payload was lost, the mission itself was an educational success for the students and the program. Some data was received through telemetry.