

NASA System Maturation Teams: ECLSS & Environmental Monitoring

ASEB, Oct 2016

Robyn Gatens
Deputy Director, International Space Station Division
Human Exploration and Operations Mission Directorate

Background: Creation of SMT's in 2013

National Aeronautics and Space Administration
Headquarters
Washington, DC 20546-0001

NASA

August 13, 2013

Reply to Attn of: Human Exploration and Operations Mission Directorate

TO: Directors, NASA Center

FROM: Associate Administrator for Human Exploration and Operations

SUBJECT: Establishment of NASA System Maturation Teams

NASA Human Exploration and Operations Mission Directorate (HEOMD) is implementing a capability driven approach to future missions. This capability driven approach provides a framework through which architecture planning can be used to identify critical technology goals. This information, coordinated with the international partner critical technology goals identified in the Global Exploration Roadmap provides a strong foundation for HEOMD strategic planning and investment recommendations in preparation for future human space exploration. The Advanced Exploration Systems (AES) office within HEOMD has been tasked with leading a directorate wide team to develop system maturation roadmaps defining required improvements in design and operability for spaceflight systems to support the needs for future human space exploration. In addition, operation in a spaceflight environment such as on the International Space Station (ISS), when beneficial, should be used to prove the necessary reliability and operating parameters for future missions. These roadmaps will also provide a good foundation for the HEOMD input to the Office of the Chief Technologist technology development roadmap updates scheduled for release next year.

To guide this capability definition, HEOMD is establishing System Maturation Teams (SMT). The purpose of each multi-Center SMT will be to fully develop a roadmap that defines the activities required to advance critical capabilities, the means of demonstrating system performance, and the implementation planning to achieve the steps of the roadmap. These teams will also serve as ongoing subject matter expert teams that will be responsible for providing technical reviews of incoming proposals, recommendations for integrated ISS and ground tests, and inputs to the budget process for their respective areas. The teams will be augmented as required by tasks assigned. For example, international partner representatives may be added to the team to assess the capabilities from a global context. SMT status will be briefed periodically at HEOMD Directorate Program Management Council meetings across the year.

Recognizing that the expertise to accomplish this task is resident across the agency, the candidates to lead the SMTs, identified in the attachment to this letter, have been selected from across the centers. These candidates have been briefed on the goals of the SMT and are in the process of identifying their full team membership across the agency. I request your

- **The purpose of each multi-center SMT is to fully develop a roadmap that defines**
 - Measures of system performance required to execute future missions
 - The activities required to advance critical capabilities
 - The means of demonstrating system performance
 - The implementation planning to achieve the steps of the roadmap
- **The teams also serve as ongoing subject matter expert teams that are responsible for**
 - Providing technical reviews of incoming proposals
 - Recommendations for integrated ISS and ground tests
 - Inputs to the budget process for their respective areas

System Maturation Teams

System Maturation Team (SMT)
Autonomous Mission Operations (AMO)
Communications and Navigation (Comm/Nav)
Crew Health & Protection - Radiation
Environmental Control and Life Support Systems and Environmental Monitoring (ECLSS-EM)
Entry, Descent and Landing (EDL)
Extravehicular Activities (EVA)
Fire Safety
Human-Robotic Mission Operations
In-Situ Resource Utilization (ISRU)
Power and Energy Storage
Propulsion
Thermal Systems
Avionics (Discipline Team)
Structures, Mechanisms, Materials and Process (SMMMP) (Discipline Team)

Human Space Exploration Phases

Today

Phase 0: Exploration Systems
Testing on ISS

Ends with testing,
research and
demos complete*

Asteroid Redirect-Crewed
Mission Marks Move from
Phase 1 to Phase 2

Phase 1: *Cislunar Flight*
Testing of Exploration
Systems

Ends with one year
crewed Mars-class
shakedown cruise

Phase 2: *Cislunar Validation*
of Exploration Capability

Phase 3: Crewed Missions
Beyond Earth-Moon System

Phase 4a: Development
and robotic
preparatory missions

Proving Ground

Phase 4b: Mars
Human Landing
Missions

* There are several other
considerations for ISS end-of-life

The Habitation Development Challenge

800-1,100 Days
Total time crew is
away from Earth –
for orbit missions all in
Micro-g and Radiation

Long Surface Stay
500 Days

HABITATION CAPABILITY

Habitation Systems – AES/ISS/STMD

- Environmental Control & Life Support
- Autonomous Systems
- EVA
- Fire Safety
- Radiation Protection

Integrated testing on ISS

Habitation Systems - Crew Health – HRP

- Human Research
- Human Performance
- Exercise
- Nutrition

PROVING GROUND

Habitation Capability– NextSTEP BAA / Int. Partners

- Studies and ground prototypes of pressurized volumes

NextSTEP Phase 1: 2015-2016

Cislunar habitation concepts that leverage commercialization plans for LEO

LOCKHEED MARTIN

BIGELOW AEROSPACE

ORBITAL ATK

BOEING

FOUR SIGNIFICANTLY DIFFERENT CONCEPTS RECEIVED

Partners develop required deliverables, including concept descriptions with concept of operations, NextSTEP Phase 2 proposals, and statements of work.

NextSTEP Phase 2: 2016-2018

BIGELOW AEROSPACE

FIVE GROUND PROTOTYPES BY 2018

SIERRA NEVADA CORPORATION

ORBITAL ATK

LOCKHEED MARTIN

BOEING

- Partners refine concepts and develop ground prototypes.
- NASA leads standards and common interfaces development.

ONE CONCEPT STUDY

NANORACKS IXION

Initial discussions with international partners

Define reference habitat architecture in preparation for Phase 3.

Phase 3: 2018+

- Partnership and Acquisition approach, leveraging domestic and international capabilities
- Development of deep space habitation capabilities
- Deliverables: flight unit(s)

Specific Habitation Systems Objectives

Habitation Systems Elements

The systems, tools, and protections that allow humans to live and work in space and on other worlds.

T O D A Y
ISS

42% O₂ Recovery from CO₂
90% H₂O Recovery
< 6 mo mean time before failure
(for some components)

F U T U R E
Deep Space

75%+ O₂ Recovery from CO₂
98%+ H₂O Recovery
>30 mo mean time before failure

Limited, crew-intensive on-board capability
Reliance on sample return to Earth for analysis

On-board analysis capability with no sample return
Identify and quantify species and organisms in air & water

Bulky fitness equipment
Limited medical capability
Frequent food system resupply

Smaller, efficient equipment
Onboard medical capability
Long-duration food system

Node 2 crew quarters (CQ) w/ polyethylene reduce impacts of proton irradiation.
RAD, REM – real-time dosimetry, monitoring, tracking, model validation & verification
TEPC, IVTEPC – real-time dosimetry
CPD, RAM – passive dosimeters

Solar particle event storm shelter, optimized position of on-board materials and CQ
Distributed REM/HERA system for real-time monitoring & tracking
CPAD – real-time dosimeter

Large CO₂ Suppressant Tanks
2-cartridge mask
Obsolete combustion prod. sensor
Only depress/repress clean-up

Unified, effective fire safety approach across small and large architecture elements

Manual scans, displaced items
Disposable cotton clothing
Packaging disposed
Bag and discard

Automatic, autonomous RFID
Long-wear clothing & laundry
Bags/foam repurposed w/3D printer
Resource recovery, then disposal

Minimal on-board autonomy
Near-continuous ground-crew comm
Some common interfaces, modules controlled separately

Ops independent of Earth & crew
Up to 40-minute comm delay
Widespread common interfaces, modules/systems integrated

Phase 0 – Habitation Systems Testing on ISS

Habitation Systems to include:

- 4-rack Exploration ECLSS and Environmental Monitoring hardware
- Fire Safety studies and end-to-end detection/suppression/cleanup testing in Saffire series (Cygnus)
- Mars-class exercise equipment
- On-board medical devices for long duration missions
- Long-duration food storage
- Radiation monitoring and shielding
- Autonomous crew operations

Mars is Harder for ECLSS

- Regular resupplies of makeup consumables, spare parts
 - 42% air loop closure
 - 90% water loop closure
 - 6 months of spares
- Return, analyze samples on Earth
- Emergency crew return capability
- Trash disposal

- No resupply
 - 75% air loop closure
 - 98% water loop closure
 - 3 years of spares
- On orbit monitoring
- No emergency crew return
- No trash disposal

Exploration ECLSS Diagram

Crew Systems

- Hygiene water
- Potable Water Dispenser

Current ISS Capabilities and Challenges: Atmosphere Management

• Circulation

- ISS: Fans (cabin & intermodule), valves, ducting, mufflers, expendable HEPA filter elements
- Challenges: Quiet fans, filters for surface dust

• Remove CO₂ and contaminants

- ISS: Regenerative zeolite CDRA, supports ~2.3 mmHg ppCO₂ for 4 crew. MTBF <6 months. Obsolete contaminant sorbents.
- Challenges: Reliability, ppCO₂ <2 mmHg, commercial sorbents

• Remove humidity

- ISS: Condensing heat exchangers with anti-microbial hydrophilic coatings requiring periodic dryout, catalyze siloxane compounds.
- Challenge: Durable, inert, anti-microbial coatings that do not require dry-out

• Supply O₂

- ISS: Oxygen Generation Assembly (H₂O electrolysis, ambient pressure); high pressure stored O₂ for EVA
- Challenge: Provide high pressure/high purity O₂ for EVA replenishment & medical use

• Recovery of O₂ from CO₂

- ISS: Sabatier process reactor, recovers 42% O₂ from CO₂
- Challenge: >75% recovery of O₂ from CO₂

Current ISS Capabilities and Challenges: Water Management

• Water Storage & biocide

- ISS: Bellows tanks, collapsible bags, iodine for microbial control
- Challenges: Common biocide (silver) that does not need to be removed prior to crew consumption; dormancy

• Urine Processing

- ISS: Urine Processing Assembly (vapor compression distillation), currently recovers 85% (brine is stored for disposal)
- Challenges: reliability; recovery of urine brine water

• Water Processing

- ISS: Water Processor Assembly (filtration, adsorption, ion exchange, catalytic oxidation, gas/liquid membrane separators), 100% recovery, 0.11 lbs consumables + limited life hw/lb water processed.
- Challenges: Reduced expendables; reliability

Current ISS Capabilities and Challenges: Waste Management

- **Logistical Waste (packaging, containers, etc.)**
 - ISS: Gather & store; dispose (in re-entry craft)
 - Challenge: Reduce &/or repurpose
- **Trash**
 - ISS: Gather & store; dispose (in re-entry craft)
 - Challenge: Compaction, stabilization, resource recovery
- **Metabolic Waste**
 - ISS: Russian Commode, sealed canister, disposal in re-entry craft
 - Challenge: Long-duration stabilization, potential resource recovery, volume and expendable reduction

Current ISS Capabilities and Challenges: Environmental Monitoring

• Water Monitoring

- ISS: On-line conductivity; Off-line total organic carbon, iodine; Samples returned to earth for full analysis
- Challenge: On-orbit identification and quantification of specific organic, inorganic compounds.

• Microbial

- ISS: Culture-based plate count, no identification, 1.7 hrs crew time/sample, 48 hr response time; samples returned to earth.
- Challenge: On-orbit, non culture-based monitor with identification & quantification, faster response time and minimal crew time

• Atmosphere

- ISS: Major Constituent Analyzer (mass spectrometry – 6 constituents); COTS Atmosphere Quality Monitors (GC/DMS) measure ammonia and some additional trace gases; remainder of trace gases via grab sample return; Combustion Product Analyzer (CSA-CP, parts now obsolete)
- Challenges: On-board trace gas capability that does not rely on sample return, optical targeted gas analyzer

• Particulate

- ISS: N/A
- Challenge: On-orbit monitor for respiratory particulate hazards

• Acoustic

- SOA: Hand held sound level meter, manual crew assays
- Challenge: Continuous acoustic monitoring with alerting

ECLSS & Environmental Monitoring Capability Gaps

Function	Capability Gaps	Gap Criticality: 5 = high 1 = low	Gap criticality as applicable to µg transit Hab	Orion Need
CO ₂ Removal	Bed and valve reliability; ppCO ₂ < 2 mmHg		5	
O ₂ recovery from CO ₂	Recover >75% O ₂ from CO ₂		5	
Urine brine processing	Water recovery from urine brine >85%		5	
Metabolic solid waste collection	Low-mass, universal waste collection		5	X
Trace Contaminant Control	Replace obsolete sorbents w/ higher capacity; siloxane removal		4	X
Condensing Heat Exchanger	Durable, chemically-inert hydrophilic surfaces with antimicrobial properties		4	
Water microbial control	Common silver biocide with on-orbit redosing		4	
Contingency urine collection	Backup, no moving parts urine separator		4	X
Urine processing	Reliability, 85% water from urine, dormancy survival		4	
Atmosphere monitoring	Small, reliable atmosphere monitor for major constituents, trace gases, targeted gases		4	X
Water monitoring	In-flight identification & quantification of species in water		4	
Microbial monitoring	Non-culture based in-flight monitor with species identification & quantification		4	
O ₂ generation	Smaller, reduced complexity, alternate H ₂ sensor		3	
High pressure O ₂	High pressure (3000 psi) O ₂ for EVA/on-demand O ₂ supply for contingency medical		3	
Wastewater processing (WPA)	Reliability (ambient temp, reduced pressure catalyst), reduced expendables, dormancy survival		3	
Non-metabolic solid waste	Volume reduction, stabilization, resource recovery		3	
Particulate monitoring	On-board measurement of particulate hazards		3	
Particulate Filtration	Surface dust pre-filter; regen filter		2	
Atmosphere circulation	Quiet fans		2	
Logistics Reduction	10:1 volume reduction logistical and clothing		2	
Metabolic solid waste treatment	Useful products from metabolic waste		1	15

Exploration ECLSS Roadmap

Progress – Atmosphere Management

- **CO₂ Removal**
 - improved sorbents
 - alternate technology development
- **Oxygen Generation & High Press O₂**
 - testing to reduce complexity
 - high pressure cell stack development
 - oxygen concentrator development
- **Oxygen Recovery/CO₂ Reduction**
 - new technology development
- **Condensing Heat Exchanger**
 - improved coatings development
- **Trace Contaminant Control**
 - alternate commercial sorbent testing
 - integrated architecture
- **Particulate Filtration**
 - pre-filter and regenerable filter development

Hydrogen Recombiner

3rd Gen PPA

Scrolling Screen Pre-filter

Progress – Water Management

- **Urine processing**
 - new pretreat formula on ISS improves recovery to 85-90%
 - pump reliability improvements
- **Water processing**
 - improved catalyst development
 - operational filter life extension
 - alternate technology/reverse osmosis testing & trade
- **Brine processing**
 - ISS flight demonstration in development – flies in 2017

- **Silver biocide**
 - development of on orbit injection capability

Progress – Waste Management

- **Commode**

- universal waste management system for ISS demo & Orion
- minimum mass fecal container development

- **Trash management**

- heat melt compactor development
- trash to gas development

- **Fecal processing**

- torrefaction SBIR development

- **Logistics Reduction**

- long wear clothing demonstrated on ISS
- repurposing of packaging and cargo bags
- RFID-enabled logistics management planned for ISS

Progress – Environmental Monitoring

• Atmosphere Monitors

- micro GC/MS for major constituents and trace gases ISS tech demo planned
- laser-based monitors for combustion products and targeted gases (planned for Saffire demonstration)
- improved mass spec for ISS & Orion use

SAM

• Water Monitor

- Various technologies in development
- front end to atmosphere monitor for water samples

• Microbial Monitor

- PCR (Razor) flight demonstration on ISS now
- DNA sequencer flight demonstration

• Particulate Monitor

- aerosol sampler flight demonstration (OA-5)
- SBIR particulate monitor development

Thermophoretic Sampler
(TPS)

(Credit: RJ Lee Group)