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Outline

- What does it mean for emergence of a biosphere to have been a “necessary”
stage in planetary maturation?

- What detailed features of biochemistry and higher-level architecture can be
invoked as having this interpretation?

- When does this move beyond being “essay” and become a theoretical claim?
What conceptual systems do we have to support such questioning?

- Problems, opportunities, needed work, and cautions for exoplanet studies



The mathematical concept at issue:
breakdown as a state of order in its own right

Breakdown processes are robust states of dynamical order

Q: Is the emergence of a biosphere a chemical version of this?



System characteristics that lead to breakdown
states: self-amplifying positive feedbacks




—arth’s redox battery is the most obviously-coupled
disequilibrium to autotrophy and core biochemistry
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Where would this show up? Evidence for
biochemistry as an outgrowth of geochemistry

» Continuity of ancient and universal biochemistry with selective organic
geochemistry

» Could happen by “lock-in” or as shared reflection of paths of least
resistance

* Infer phylogenetically from evolution’s “dogs that didn’t bark” --
Small-molecule chemistry unchanged even with modern enzymes

- “Upward causation”: metabolic patterns imprinted at higher levels where
Central Dogma reasoning would argue it doesn’t belong



Universality and recapitulation in autotrophic
Carbon Fixation and core anabolic pathways

A universal biosynthetic core exists, All innovation in Carbon
Organized around TCA Fixation has remained
intermediates close to a TCA template

gluconeogenesis
/ glycolysis
H20

Sugar-phosphates,
RNA, Calvin cycle

Braakman and Smith,
Phys. Biol. 10:011001 (2013)
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Upward causation: suggestions that the genetic
code was entrained on biosynthetic regularities

 |deal code should be a “firewall”

» Central Dogma suggests arbitrary assignments (Crick’s “adapter” argument)

* Error buffering (polar requirement etc.) departs from naive “adapters”,
but still only applies to properties of the full amino-acids as used

* Yet: the code is most “compressible” in terms of early-biosynthetic pathway
regularities



Code First Base: Organized according to
backbone starting point in the Citric Acid Cycle
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Copley et al.
PNAS 201:4442 (2005)



A Decision Tree:

Dependence on early
biosynthetic pathway
steps Is even stronger
than properties of the
terminal amino acids:

Requires some imprint of
history, beyond a simple
version of error-buffering

Copley et al. PNAS 201:4442 (2005)
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Main premises of
the usual “metabolism-first” interpretation

- Continuity premise: some network selectively organized around these
pathways was already a Hadean geochemical feature

* “The rest” of metabolism was what could be most easily built from these
precursors, which were present in excess abundance

* As organic control systems came to be found among this inventory, fithess
was pre-disposed by the system contexts already in place

- Consequence: evolution refined and re-invented catalysts, but many of the
pathways were locked in place

 In some cases they were the best solutions anyway; no fithess advantage
for deviating from them, even with refined genes and enzymes (evolutionary
constraint and convergence tend to exist along a continuum)



When does this “essay” become a theory?
Rehearsing Boltzmann is a start, but not enough

Second law?
No problem!

The problem:

When does repair of things that
constantly fall apart become a
robust and generic outcome?

This is fundamentally a question
about kinetics and trajectories




Thermodynamics neither MxSt nor siPsgld mean
equilibrium: need a theory of process and history

- Concept behind ordered macro-phases: scale structure
— convergence on exponential families Payet = e~ NS
— scale separates from structure Touchette. Phys. Rep 478:1—69 (2009)

- Dynamic context: Equilibrium Free Energy -> Effective Action

Dynamic phase transitions <-> shifts of central tendencies of macrostates

Connection to the concept of “repair”: Optimal error correction is a
thermodynamic theory in this sense

2 5 z
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- Consequence for evolution: g ¢5 § Sg
3-way trade-off between robustness, S 35 8§ 3&
capacity for complexity, and cost P N 6—D(C—R)
error scale structure



Universal metabolism through the lens of
dynamical phase transition theory

- Abiotic Earth becomes a dynamically metastable condition

- Maximum-path-entropy condition has the most ways to fluctuate into it and
the fewest ways to fluctuate out: definition of “path of least resistance”

 Contributions from familiar equilibrium thermodynamics and chemical kinetics
1) “Easy” chemistry is water-based pair/group transfer, duplicated widely
2) “Hard” chemistry is all metal-center, suggesting mineral or MLC origin (?)

« Contributions from network-level of fluctuation/control statistics
3) Self-amplifying positive feedbacks concentrate matter and energy flows
4) Feedbacks on shortest-possible (?) loops; less to diffuse/less to control



Current problems: connecting the biological story
to convincing synthetic and geo-organic chemistry

- The pathways that seem necessary and specific biologically do not seem

either inevitable or special geologically

- Reactivity is self-defeating: e.g. C+1 reduction

Energetic control Kinetic control

SN .
]V vg
AR AN

Corollary: formose reaction is in a qualitatively
different class from reductive carboxylation

- What is the right concept of disequilibrium?
“Chasing equilibrium?” (hot/cold or wet/dry cycling)

Biochemistry uses group-transfer cascades

and “compartmented quasi-equilibrium”
(acknowledge Y. Oono)
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Proposed useful next steps

- Rudolf Thauer et al., Everett Shock et al. (et al. et al.) have for decades
assembled essential databases of thermodynamic landscapes for
biochemically relevant organic reactions

- We need a similar encyclopedia for kinetics:
-- Mineral metal-center catalytic selectivity and activity

Edge/vertex effects
Impurities and mineral/mineral interfaces in complexes

-- Metal-ligand complex catalysis in solution phase
Element, redox state, ligand-field geometry and orbital properties

* Much of the progress in my generation (microbiology, geo-energetics) has
come from decades of painstaking (non-flashy) highly professional work;
How best to organize and support such work in the above topics?



Need to connect Hadean atmosphere/ocean
calibration to main controlling reaction classes

Kharecha, Kasting, Seifert, Geobiology 3:53 (2005)
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Closing thoughts:

—ven If this iIs somehow right....

Cautions for exoplanet studies

* We need to move beyond the mentality of “getting to a material”
Many conversations are already shifting well in that direction

« Not “organics” per se, but organics out of equilibrium with the context

- Big-and-random (tar) is not “complex” -- complex implies elements of selectivity.
How much of the selection of metabolism was geochemical?
Gell-Mann and Lloyd, Complexity 2:44—52 (1996)

* Not all disequilibria are equivalent, w.r.t. problems of biological origin
Redox # radioactivity # thermal activation # dehydration
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Remember: crystallography only has to solve constraints of
matching representations of the rotation group to spatial lattices

http://www.geo.arizona.edu/xtal/geos306/fall13-16.htm
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