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SAM measurements of organic volatiles from sample
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What happens to a sample when its heated
under helium?
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What happens to a sample when its heated

under helium?
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Macromolecules

Killops and Killops, 1993



Character of SAM background in Evolved Gas Analysis (EGA)
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High temperature release
from refractory organic
matter

CH,

C3-4 alkyl l

| | | | | | | |
100 200 300 400 500 600 700 800

Rocknest Eolian Drift I 0 o N

Eigenbrode et al, 2014 AGU Fall Meeting
B Gale crater ﬂOOr Eigenbrode et al., in prep

- scoop site, first analysis by SAM NASA/JPL-Caltech/Ms:
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Chemical composition of Gale, Meridiani and Gusev soils are
basaltic and nearly identical in APXS measurements
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Yen et al., 2013, LPSC #2495; Blake et al. 2013, Science.



MSL Team’s stratigraphy

column
(Grotzinger et al, 2015)
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Chlorinated C1-C4
chains and
benzene detected

Yellowknife Bay

- Gale Crater floor sediments
- drill sites analyzed by SAM
- lake deposit (Grotzinger et al., 2015, Science)

Freissinet et al., 2015,
JGR
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relative
counts per second

SAM EGA of Cumberland

Single-Ring Aromatic Hydrocarbons
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SAM EGA of Cumberland
C1-C4 Alkyl Hydrocarbons
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From refractory organic matter to chlorohydrocarbons
proposed mechanism: Fenton-like reactions

lonizing radiation +
Organics + Metal catalysts

Low temperature evolution of
chloro-hydrocabons may be an
indication of radiolytic
weathering
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Benner et al., 2000, PNAS (via UV)



Murray Formation at Pahrump Hills
- bottom of Lower Mound outcrop at Gale Crater

- drill sites analyzed by SAM
- lake deposit (Grotzinger et al., 2015, Science)

NASA/JPL-Caltech/MS¢




C1-C5? Alkyl Hydrocarbons
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SAM EGA of Mojave2

Single-Ring Aromatic Hydrocarbons
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Relative
counts per second

SAM EGA of Mojave2

Organic sulfur volatiles

H3C—SH Methanthiol
CH,
47¢ |H C—S/ Dimethylsulfide
3

62 x3 S‘ O} Thiophene
MM e s

I | ' I ' I ' i
200 400 600 800
Sample Temperature (°C)

Eigenbrode et al, AGU, 2015
Eigenbrode et al., in prep



Identification of Organic Sulfur Compounds
by SAM GCMS of Mojave2
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Comparison to Martian meteorites
Example: Tissint




Lab EGA analysis of Tissint martian meteorite
C1-C4 Alkyl Hydrocarbons
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Eigenbrode et al, AGU, 2015
Eigenbrode et al., in prep
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e Possible sources:

e Abiotic igneous/hydrothermal?
e Meteoritic?
e Heavily processed biological?

e We don’t know the organic source. Could be
a mixture.
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e Supports habitability of the ancient lake
environment in Gale Crater ~3.6 billion years ago

— Organic molecules = energy and C source for metabolisms

e Supports modern and future habitability
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